Low Charge Heat Pump Water Heater Using Propane

Oak Ridge National Laboratory PI: Bo Shen Presenter: Mingkan Zhang 865-574-5745, <u>shenb@ornl.gov</u> WBS#03.02.02.43, Lab Call CRADA with Rheem

Project Summary

Objective and outcome

- Develop compact condensers to reduce charge and achieve similar heat transfer effectiveness of wrappedtank D-shape coils
- Develop and calibrate propane HPWH system design tool
- Motivate supply chain to develop propane enabling technologies, i.e., propane specific compressor@60HZ, optimized microchannel condensers
- Laboratory verification and accelerated life tests on a <u>220V, HPWH prototype reaching 3.3 UEF with propane <</u> <u>150 g</u>

OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

Team and Partners

Rheem Manufacturing Company

U.S. DEPARTMENT OF ENERGY

<u>Stats</u>

Start date: 04/01/2022
Planned end date: 09/30/2023
Budget: DOE total-\$300K; Rheem cost-share-\$300K
<u>Key Milestones</u>
1. Experimentally study performance of compact condensers, i.e., microchannel and submerged condensers, 04/30/2022
2. Develop compact condenser coil sizing and propane HPWH system design tool, 06/30/2022
3. Initial lab tests verify a UEF > 3.0 using propane charge near 200 grams, 09/30/2022
4. Experimental results prove measured UEF > 3.3, system charge < 150 grams, 06/30/2023

Propane

(R290), natural refrigerant

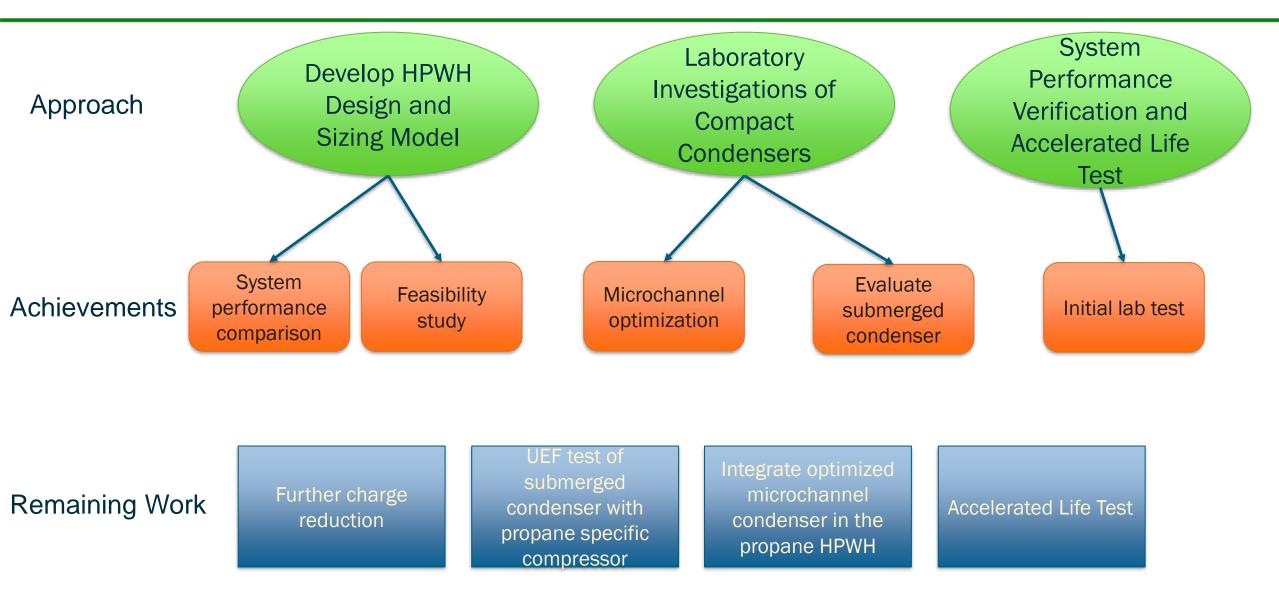
3X More Efficient

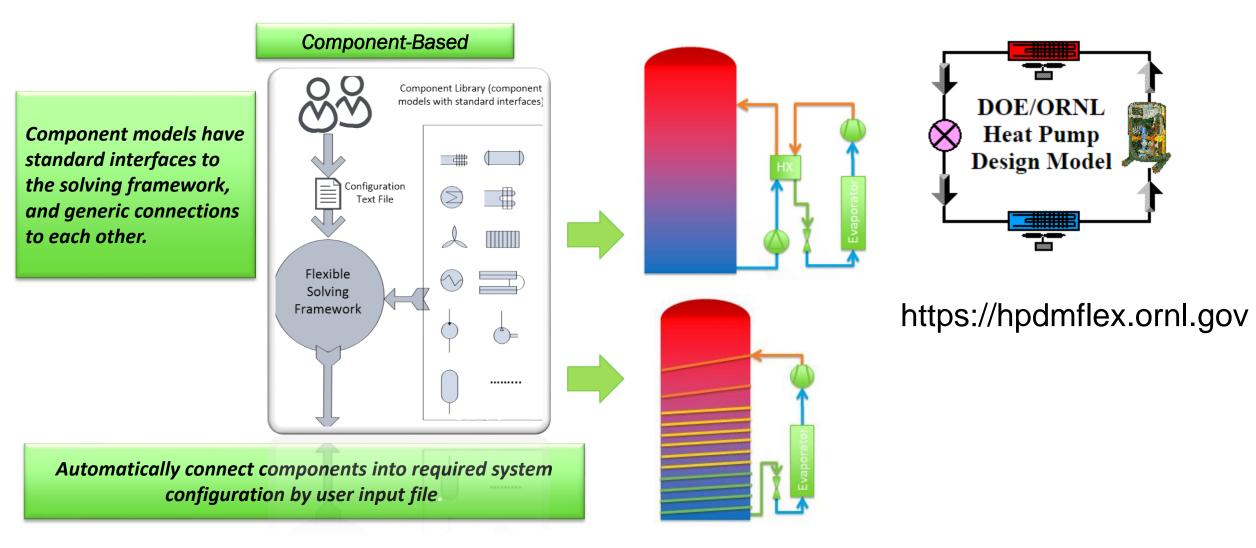
Problems addressed

- The HPWH industry is phasing out R-134a (GWP of 1430).
- Propane has an ultra-low GWP < 3.3, and is less expensive, more environmentfriendly than HFO alternatives (R-1234yf, ze). But extremely flammable and subject to charge limit, i.e., < 150 g for indoor use.
- European market prefers propane than F-gas refrigerants. Propane HPWHs have better marketing potential internationally. However, no propane heat pump water heaters on the U.S. market.
- Component technologies are not fully ready for propane, i.e., propane specific compressor@60HZ, and compact heat exchangers with reduced charge.

Alignment and Impact

Greenhouse gas emissions reductions 50-52% reduction by 2030 vs. 2005 levels Net-zero emissions


economy by 2050


Power system decarbonization 100% carbon pollutionfree electricity by 2035 **Energy justice** 40% of benefits from federal climate and clean energy investments flow to disadvantaged communities

- Green House Emissions Reductions: Replace high GWP refrigerants in Rheem's residential HPWH product families.
- Energy Justice: Very low-cost (150 grams propane costs less than 10¢) propane leads to heat pump water heaters with low prices.
- Develop and calibrate high-fidelity, publicdomain HPWH and heat exchanger modelling and design tool for propane, to accelerate product development.

Layout of Research Path

Approach – Upgrade DOE/ORNL Heat Pump Design Model

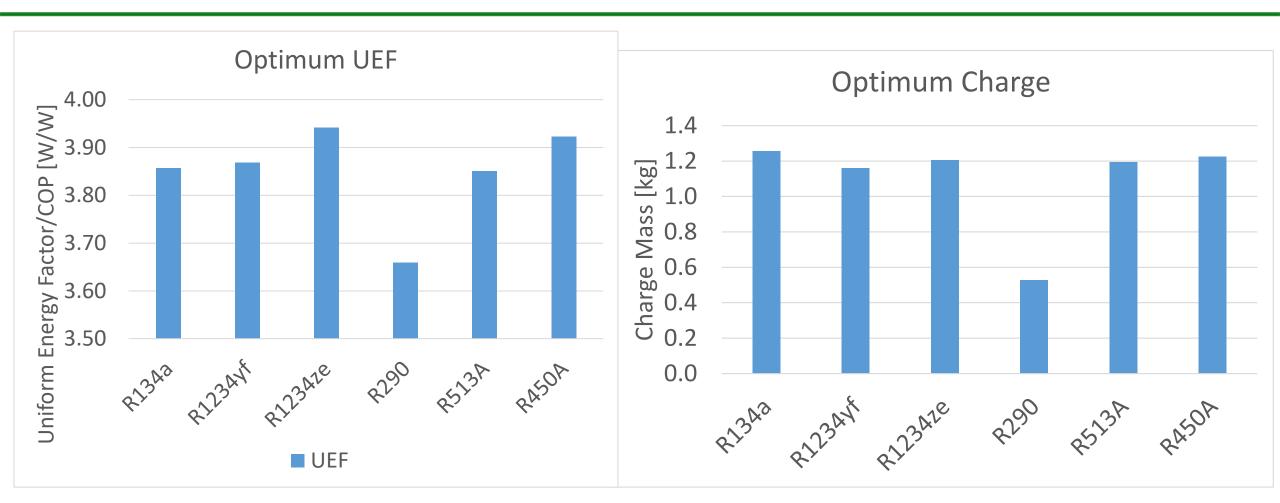
Approach – Laboratory Investigations of Compact Condensers

- Investigate microchannel condenser for charge reduction: Refrigerant charge (inner volume) in a tube relative to its surface area is $(\pi^*d^2/4^*Tube Length/\pi^*d^*Tube Length) = d/4$.
- Evaluate finned, double-wall submerged condenser and study impact of water side scaling via an extended period of life test.

Approach – System Performance Verification and Accelerated Life Test

- Drop-in performance tests using R-134a compressor, control and a compact condenser, achieving near 3.0 UEF and 200 grams of propane
- Fabricate a propane specific HPWH, with optimized compressor, condenser and evaporator, reaching a UEF of 3.3 with a charge < 150 grams
- Accelerated life test to demonstrate a market ready product

Progress: Propane HPWH system model with other alternatives

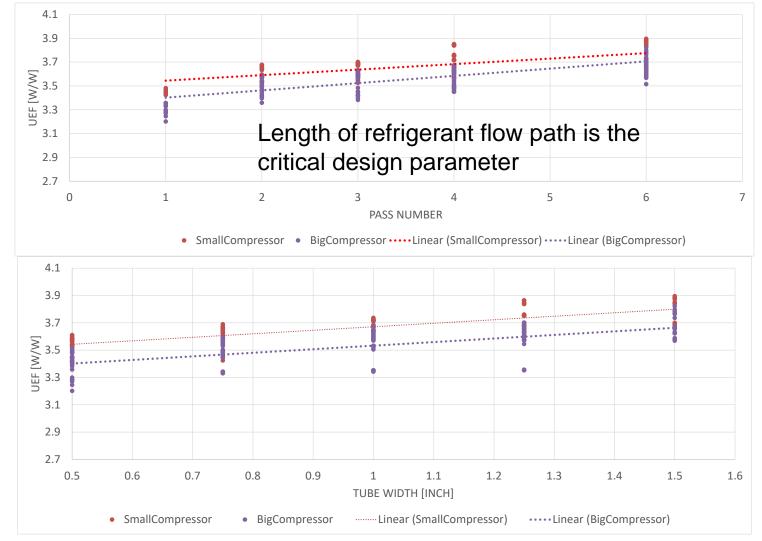

Refrigerant	GWP	Safety	Glide/pressure in	Glide/pressure	Critical	Volumetric	Volumetric
		Class	Condenser	in Evaporator	Temperature/M	Vaporization	Vaporization
			@54.4°C	@ 4.4°C [K]	ole weight	Heat@54.4°	Heat@ 4.4°C
			[K]/[kPa]	/[kPa]	[C]/[g/mol]	C [kJ/m ³]	[kJ/m ³]
						10959.4	3276.0
R-134a (baseline)	1430	A1	0/1469	0/342	101.06/102.03		
R-290	3	A3	0/1883	0/541	97.0/40.06	11800.3	4335.3
R-1234yf	4	A2L	0/1444	0/366	95.0/114.04	10024.4	3263.7
R-1234ze	6	A2L	0/1114	0/254	153.7/114.04	8522.1	2473.2
R-450A ^a	547	A1	0.60/1284	0.64/297	104.4/108.67	9700.5	2861.0
R-513A ^b	573	A1	0.01/1530	0.01/377	96.5/108.43	10832.0	3442.8

^a R-450A has mass-based compositions of R-1234ze (0.58)/ R-134a (0.42).

^b R-513A has mass-based compositions of R-1234yf (0.56)/ R-134a (0.44).

Propane has higher working pressure and volumetric capacity (smaller compressor)

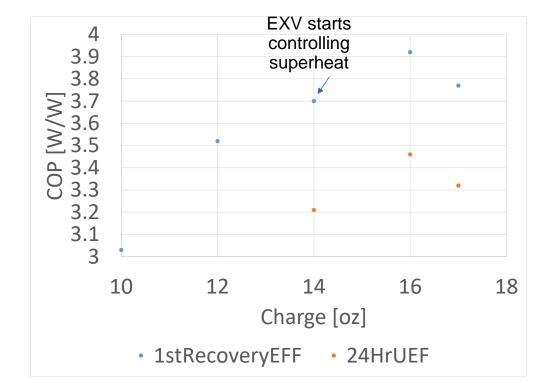
Progress: Feasibility Study by Simulation



Propane HPWH can reach similar 24-hr heating efficiency (95%), and the required 50% charge of R-134a because of propane's small molecular weight.

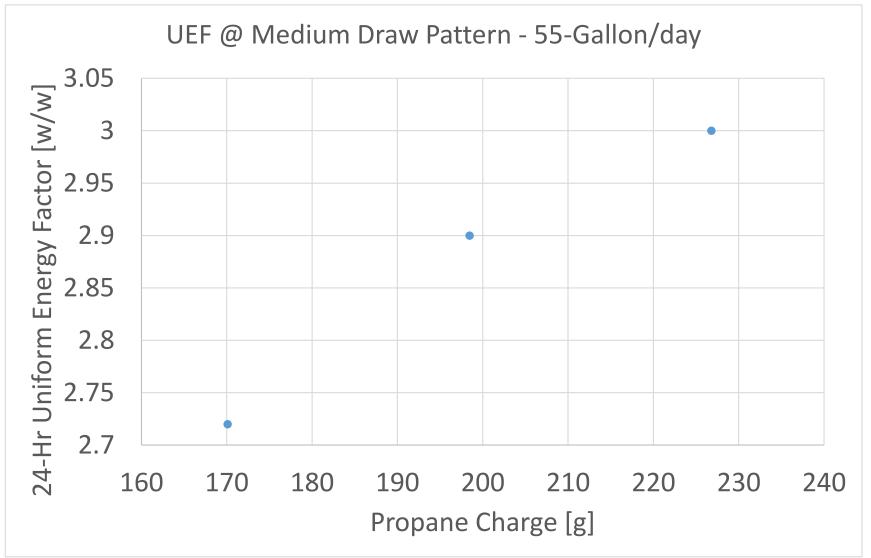
Design Optimization to Improve Microchannel Condenser Design

Working with Supplier to optimize microchannel geometry, balance between pressure drop and heat transfer @ target compressor size



Extensive parametric study to identify optimized geometry

Progress: Apply finned double-wall submerged condenser


Optimized UEF

 Achieved 3.45 UEF@16 oz R-134a versus 3.56 UEF@24 oz using D-shape wrapped-tank condenser

Performed 8-month life test (55-gallon UEF test, TN city water every day), no apparent performance degradation due to water scaling

Progress: Initial lab tests verify a UEF near 3.0 using propane charge of 200 grams

- Laboratory investigations
 @ uniform energy factor test condition
- 50-gallon tank
- 24-Hr medium draw pattern
- Entering water@58°F,
- Temperature set@120°F
- Finned double-wall submerged condenser
 - Confirmed control (electronic expansion valve) directly workable for propane systems

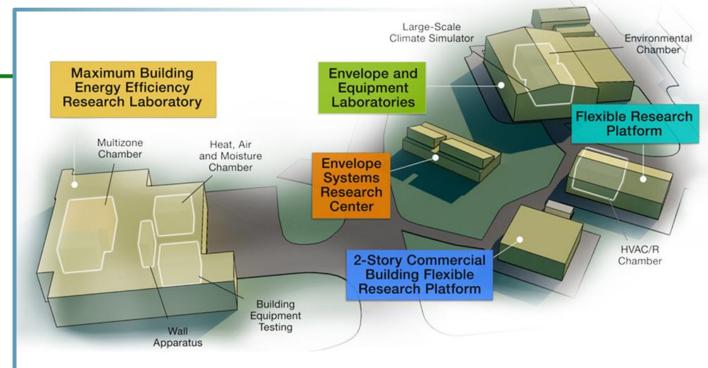
Remaining Project Work

Further charge reduction, i.e., microchannel evaporator or 5 mm tube fin-and-tube evaporator

Conduct UEF test of submerged condenser with propane specific compressor

Integrate optimized microchannel condenser in the propane HPWH and measure the performance

Accelerated Life Test


Publication:

"A Numerical Modelling Study on Submerged Condensers for Heat Pump Water Heaters Using Low-GWP Refrigerants", Mingkan Zhang, Bo Shen, International Refrigeration Conference at Purdue, 2022.

Thank you

Oak Ridge National Laboratory Bo Shen, Research Staff (865)-574-5745; shenb@ornl.gov

ORNL's Building Technologies Research and Integration Center (BTRIC) has supported DOE BTO since 1993. BTRIC is comprised of 50,000+ ft² of lab facilities conducting RD&D to support the DOE mission to equitably transition America to a carbon pollution-free electricity sector by 2035 and carbon free economy by 2050.

Scientific and Economic Results

238 publications in FY20
125 industry partners
27 university partners
10 R&D 100 awards
42 active CRADAs

BTRIC is a DOE-Designated National User Facility

	Task		Q1	Q2	Q3	Q 4	Q5	Q6	Q7	Q8
	1	Development of submerged condenser coil sizing and propane HPWH system design tool								
Year 1	2	Develop double-wall submerged condenser using microtubes, and size evaporator(s)								
	Milestone 1	Report optimized design, heat exchanger configurations, and manufacturing method								
	3	Identification of anti-scaling coating material								
	4	Fabrication of HPWHs using submerged coils with regular tubes and microtubes								
	5	First Round of Laboratory Investigations								
	Milestone 2	Initial lab tests verify a UEF > 3.0 using propane charge < 200 grams				X	GO	/No-C	j0	
	6	Improvement and Modification towards the final project goals						G	o/No)-
		experimental results prove measured UEF > 3.3, system charge < 150 grams							,	
Year 2	7	Accelerated Life Tests								
	8	Develop a Commercialization Plan and Manufacturing guidelines								
	9	Final Reporting								
	Milestone 4	Submit project final report summarizing all the laboratory investigations, manufacturing guidelines.								

Project Budget

Project Budget: \$300K (DOE) Variances: NONE Cost to Date: \$300K Additional Funding: NONE

Budget History									
FY 2	2022	FY 2	023	FY 2024					
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share				
50K	50K	\$150K	\$150K	\$100K	\$100K				

Industry Partner – Rheem Manufacturing Company

- Supported Rheem team to use DOE/ORNL Heat Pump Design Model to optimize heat exchanger design and accelerate HPWH system development.
- Rheem motivated its suppliers to improve microchannel condenser design and make propane specific compressor @ 60HZ.
- Rheem team developed coating material to mitigate water side scaling and manufacturing procedure to integrate the compact condensers.
- Rheem fabricated system prototypes embedded with numerous condenser technologies for ORNL's system level experiments.
- Weekly meetings with Rheem engineers to monitor the progress.

REFERENCE SLIDES