Separating Sensible and Latent Cooling with Electrically Charged Rotating Vortexes and Vapor Capturing Air Handler Technology

Auburn University Advanced Cooling Technologies, Inc. Johnson Control Inc.

Lorenzo Cremaschi Professor Department of Mechanical Engineering Auburn University

Tel: +1 (334) 844 3302 Email: <u>Izc0047@auburn.edu</u> FOA Number: DE-FOA-0002090 Award Number: DE-EE0009161

Project Summary

<u>Timeline</u>:

Start date: April 1, 2020 Planned end date: September 30, 2023 Key Milestones

- 1. Design electrospray Emitter, March 2021
- 2. Proof-of-concept tests for 5 cfm; achieve 5% Dehumidification, March 2023
- 3. Optimization and scale up to 200 cfm, Dec 2023
- 4. Technology Demo Unit, April 2024

Budget:

Total Project \$ to Date:

- DOE: \$1,015,126
- Cost Share: \$259,030

Total Project \$:

- DOE: \$1,457,470
- Cost Share: \$372,479

Key Partners:

Advanced Cooling Technologies, Inc.

Johnson Control Inc.

Project Outcome:

To develop and test <u>E</u>lectrospray <u>V</u>ortical <u>F</u>low eXchanger (EVFX) capable of flow rates of \geq 200 cubic feet per minute (cfm) and \geq 10% relative humidity to enable water vapor separation systems for separating sensible and latent cooling in heating, ventilation, and air conditioning (HVAC) systems.

Problem

U.S. Residential and Light Commercial building sector \rightarrow over 40 Quads of primary energy

 $HVAC \sim 40\%$ of total energy consumption and 28% is for space cooling

Space cooling using conventional air-conditioning \rightarrow sensible load and latent load

In warm and humid climates \rightarrow need low AC system dew point

- Temp too low for thermal comfort (reheat might require)
- Low COP

Separate Sensible and Latent Cooling (SSLC) A/C systems, specifically technologies that have high performance under extreme conditions (i.e.,above 60% relative humidity) have potential to save 30% of energy when compared with a conventional baseline system.

Alignment and Impact

The Emerging Technology Program (ETP) has identified the goal of supporting the development of costeffective technologies capable of reducing the energy use of typical buildings by 45% by 2030, relative to high-efficiency technologies available in 2010.

BTO is seeking transformational non-vapor compression HVAC technologies to move beyond refrigerants, including hybrid technologies that are not purely based on vapor compression technologies.

BTO is also interested in enhanced dehumidification capabilities that can operate at partial load or at lower cooling set points.

BTO identified system performance targets and desirable characteristics at part-load performance, including:

- Seasonal $COP_{cooling} = 12.3$
- Net zero water consumption
- Reduced size and/or weight relative to today's high efficiency units
- Readily available materials

Approach

Our proposed EVFX is, in our opinion, an innovative separation technology that aligns well with ETP goal. It separates and <u>converts latent loads into sensible loads</u> by using electrostatic energy and centrifugal force.

<u>Electrospray Vortical Flow eXchanger (EVFX) consists of small</u> electrically charged water droplets released inside air vortexes. The charged droplets attract water vapor molecules, effectively wiping out the humidity from the air. As the vapor molecules collapse on the droplets surface, the droplets initial electrical charge decreases with time due to the neutralization of the ions. Large droplets are collected at the outer wall of the vortexes and then they are re-utilized in the electrosprays.

This is a low TRL, high risk, and disruptive technology.

This project moves from the current TRL-2 (i.e., technology concept and application formulated) to TRL-5 (i.e., laboratory scale, similar system validation in relevant environment)

Impact

Technology Impact:

- "Not-In-Kind" AC dehumidification
- No toxic, no corrosive, no water consumption
- Integrate well with existing HVAC air handler
- Unit energy savings ranging from 15% to 39% as a result of (i) reduced latent load on evaporator coil and (ii) higher evaporating temperature
- Technical energy savings potential of 0.6 Quads
- For consumers, reduction in the annual cost of AC and improved air quality

(clean dust, smoke, odors).

In addition:

- EVFX made of plastic and steel inserts
- Smaller/lighter evaporator coils
- Nozzles are readily available in the market

Metric Description	EVFX Metric					
Primary Energy Savings	576 TBtu					
Seasonal Coeff. of Performance (COP) Cooling (2)	≥12.3					
Installed cost ⁽¹⁾⁽³⁾	≤ \$2,500/unit					
Installed cost per cooling unit (1)	≤ \$12/kBtu/h					
Note ⁽¹⁾ : Measured in 2019\$						
Note $^{(2)}$. Average across 57 5°F to 100 4°F in Climate zone 3A						

Note ⁽³⁾: Average between residential (\$6K) and commercial

Project Status

Three Phases / Three Budget Periods (BPs) BP 1: Develop New Electrospray Emitter BP 2: Test First EVFX Prototype and Optimization BP 3: Develop EVFX Technology Demo Unit

- Modeled vapor capturing process by electrostatic water droplets
- ✓ Designing proof-of-concept EVFX prototype for low air flow rates (5 cfm)
- Manufacturing of EVFX prototype and assembly of the new electrospray
- Instrumentation of EVFX prototype and calibration
- ✓ Proof-of-concept tests for 5 cfm;
- Achieve measurable (> 2%) Dehumidification;
 (desirable target would be 5%).
- Optimization and scale up to 200 cfm
- Technology Demo Unit
- Scale-up analysis and integration with air handlers for commercial building applications

Progress – Vapor Condensation Thermodynamic Model

Project Status – Prototype and Electrospray Emitter

Image of the electrospray in the cone-jet operational mode (34 gauge needle, 10 µl/min, 11 kV)

Project Status – Droplet Separation Efficiency

Progress – CFD Numerical Multi-Phase Flow Model

- CFD model developed in OpenFoam
- Electrically charged droplets sprayed in the air flow.
- Droplets grow and then move in the vortex tube where they are separated from the air

Project Status – CFD Simulation and Data

Stakeholder Engagement

- EVFX works better in high humidity air
 - \rightarrow EVFX used on the outside air flows \rightarrow dedicated outdoor air systems (DOAS)
 - → Exhaust Recovery Ventilators (ERV)
- Commercial buildings are well suited because
 - i. the level of technical expertise required for installing and servicing this potentially new technology are often already available for larger air handler systems
 - ii. even small percentages of energy savings by not adding any notable space are well received by the commercial buildings HVAC market.

JCI Isoclean Unit

Envirco IsoClean® Portable HEPA Filtration System

- Creates Negative Pressure Isolation Environments
- Ideal solution for hospitals, nursing homes, and dorms hotels.

Future Work

Feasibility Tests of a commercially available nozzle converted to an electro-nozzle

Dehumidification performance [DP]

$$\mathsf{DP} = \frac{w_2 - w_2^*}{w_2 - w_1}$$

Preliminary Results at 10 kV

• An air atomizing-nozzle is placed in a strong electrical field.

Thank You

Auburn University Lorenzo Cremaschi Email: Izc0047@auburn.edu

REFERENCE SLIDES

Conference Papers (6)

2022

- 1. Young, D., Shoji, Y., Yel Mahi, M., Cremaschi, S., Cremaschi, L., and Ellis, M., 2022, Sensitivity Analysis of an Electrospray Dehumidification System, Process System Engineering (PSE) Conference 2021+, Kyoto, Japan, June 19-23, 2022, Paper Identifier 518.
- 2. Muteba, G., and Cremaschi, L., 2022, Experimental Investigation of the effect of atomizing electrospray nozzles on the cooling and reduced humidification of air, *Proceedings of the 19th International Refrigeration and Air Conditioning Conference at Purdue University*, West Lafayette, IN (USA), July 11-14, 2022, Pages 1-10.
- 3. Yel Mahi, M., Young, D., Shoji, Y., Cremaschi, L., and Cremaschi, S., 2022, Numerical Investigation of Air Dehumidification through Water Droplets Dielectrophoresis, *Proc. of the 7th Thermal and Fluids Engineering Conference of the American Society of Thermal and Fluid Engineers* (ASTFE), Las Vegas, NV, USA, and virtual, May 16-18, 2022

2021

- Mahi Yel, M, Young, D., Shoji, Y., Cremaschi, S., and Cremaschi, L., 2021, Numerical Investigation of Enhanced Dehumidification Processes By Using Dielectrophoresis Principles in Moist Airflows, AIChE Annual Meeting 2021, Boston, MA, USA, Nov. 10, Paper Identifier 498h. Link: <u>https://aiche.confex.com/aiche/2021/meetingapp.cgi/Paper/627553</u>
- 5. Morcelli, S., and Cremaschi, L., 2021, Modeling of Enhanced Air Dehumidification through Electrically Charged Vapor Capturing Electrostatic Droplets, *Proc. of the 5-6th Thermal and Fluids Engineering Conference of the American Society of Thermal and Fluid Engineers* (ASTFE), New Orleans, LA, USA, now virtual, May 26-28, 2021
- 6. Morcelli, S., and Cremaschi, L., 2021, Analysis of New Data of Electro-static Assisted Air Dehumidification Processes, *Proc. of the 18th International Air Conditioning and Refrigeration Conference*, Purdue University, West Lafayette, IN, USA, now virtual conference, May 23-27, 2021

Patent

2022, Cremaschi L., Electrospray Vortical Flow Exchanger, US Patent No. US 11,358,094. Publication Date June 14, 2022.

Project Budget

Project Budget:

- Total DOE: \$1,457,470
- Total Cost Share: \$372,479

Cost to Date: 66% of Project Budget (\$978k) has been expended to date (as of Jan 31, 2023)

Additional Funding: Not needed at this time.

Budget History												
FY 20 end Sept. 30	021 2021 (past)	FY 20 end March 3	022-23 31 2023 (past)	FY 2024 end March 31 2024 (current)								
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share							
\$563,093	\$141,581	\$452,033	\$117,449	\$442,344	\$113,449							

Project Plan and Schedule

	Task	Year		2020			202	21			2022			2	2023				2024				
		MM	4 5 6	7 8 9 1	0 11 12	1 2 3	4 5 6	7 8 9 10	11 12	1 2 3	4 5 6 7 8	3 9 10 11	12 1 2	3 4 5 (678	9 10 11	12 1 2	234	5678	9 10 11	12		
	No. Description	Quarter	2	3	4	1	2	3	4	1	2 3	3 4	1	2	3	4	1	1 :	2 3	4		Mi	ilestone
	1 Model Electrostatic Droplets Gro	owth (LC)						Sta	atus														
	2 CFD numerical multi-phase flow	analysis (/	ACT)					i i															
	2.1 Upgrade ACT current CFD m	odel						co	mplet	ted (1009	%)												
Past work	2.2 Run CFD simulations							co	mplet	ted (100%	%)												
	2.3 Summarize findings							♦ M 2.3	comp	pleted (1	00%)											M	2.3
	3 Design of experiments (SC)											Lege	end										
	3.1 Insensitive design and operation	ting parame	ters						mplet	ted (100%	%)	: 1	ask Sch	neduled									
	3.2 Quantitative sensitivity to design and operating parameters completed (100%)																						
	3.3 Design test matrix M 3.3 completed (100%) ↓ Project Milestone																IVI	3.3					
	4 Design and Fabrication electrospray and mesh collector (L																						
	5 Revision of the Design (AU, AC I)	- II t II	!							1-4-1 (4000	0											
	5.1 Revision of the electrospilay a	and mesh c	onector a	esign						comp		o) ()											
	6 2D Printing of first lab sotup for	up to 5 of								comp		0)											
	6.1 3D printing first lab set up										con	nnleted (100%)										
	6.2 Integrate new electrospray er	nitter										npleted (1	100%)										
	6.3 Test for bydrodynamic perfor	mance and	at ambier	at condition							con	npleted (100%)										
	6.4 Summarize findings		at ambier								00M	16.4 cc	moleter	1 (100%)								м	64
	7 Proof-of-concept Tests at 5 cfm	flow rate (/	AU)								•		in protoc										0
	7.1 Update test rig		-1											complet	ed (100	%)							
Current work	7.2 Proof-of-concept tests at high	n and mediu	ım humidi	ty, low/me	dium/hio	ah voltag	e							complet	ed (100	%)							
	7.3 Data analysis and repeat test	 6			`									complet	ed (100	%)							
	7.4 Summarize findings and Write	e interim rej	ort										•	M 7.4 0	comple	ted (1009	%)					м	7.4
	8 Comparison of the data against	PI model a	nd finaliz	e correlat	tions (A	4U)																	
	8.1 Comparison of data vs. mode	eling results												ongoing	50%)								
	8.2 Finalize heat and mass transf	er correlatio	ons											♦ M 8.2								M	8.2
	9 Update CFD numerical models (A	AU)																					
	9.1 Upgrade CFD model for elec	trically char	ged dropl	ets effects	6									1995 - C	ongo	ing (33%	6)						
	10 Update CFD numerical model ar	nd addition	al simula	ations(AU))																		
	10.1 Upgrade CFD model														ongo	ing 50%))						
	10.2 CFD model validation with da	ta													ongo	ing 50%))						
	10.3 Summarize findings														◆ M *	10.2						Μ	10.2
Futuro work	11 Optimization of EVFX design for	larger flov	vs (200 ci	fm) (AU ar	nd JCI)																		
	11.1 Sensitivity to design and oper	rating paran	neters at 2	200 cfm														Leger	nd				
	11.2 Construct rigorous CFD-base	ed optimizat	ion frame	work														: Ta	ask Sche	duled			
	11.3 Optimize EVFX design for lar	ger flows (SC and JC	CI)														L. : Ta	ask Depe	ence			
	11.4 Summarize Findings and Wri	te Interim R	eport (LC)											•	M 11.4		_]♦ : Pi	roject Mil	estone	D · · /	M	11.4
	12 Fabrication of EVFX prototype fo	or larger flo	ow rate (2	200 cfm) (/	ACT)													🌝 : G	0/N0-G0	Decision	Point	_	
	12.1 Fabrication EVX prototype (d	emo unit)																					
	12.2 Integrate new electrospray emitter																						
	12.3 Test for hydrodynamic perfor	mance and	at ampler	it condition	15											A M 12	4					N.4	12.4
	13 Test EVX prototype (Technology		it) at lara	er flow ra	to (200	cfm) (Al	n									▼ IVI 12.4	-					IVI	12.4
	13.1 Update test rig for larger air fl		fm)	ernowra	te (200		,																
	13.2 Test Demo Unit for 5 climate	zones and	for low/hic	h/medium	voltage	26																	
	13.3 Data analysis and repeat tests																						
	13.4 Summarize findings and Write Interim Report											м	13.4										
	14 Analsysis for Overall System Inte	egration. C	ost and	Feasibility	of Ma	nufactur	ing (JCI)															
	14.1 Bill of materials	J, 4					5 (2 5)	•															
	14.2 Review manufacturing constr	aints and so	olutions fo	r large sca	ale prod	uction																	
	14.3 Summarize Findings			5	•													♦ M 1	4.3			м	14.3
	15 Write Final Report (AU)																						
	15.1 Review interim reports																- La						
	15.2 Write final report																	• 1	VI 15.1			м	15.1

Remaining Project Work

Stage of the Project:

BP 1: Develop New Electrospray Emitter (completed) BP 2: Test First EVFX Prototype and Optimization BP 3: Develop EVFX Technology Demo Unit

Start Date: April 1, 2020

✓ Modeled vapor capturing process by electrostatic water droplets (completed)

✓ Designing proof-of-concept EVFX prototype for low air flow rates (5 cfm) (next month)

 \checkmark Manufacturing of EVFX prototype and assembly of the new electrospray (by end-of-year)

✓ Instrumentation of EVFX prototype and calibration (Spring 2022)

✓ Proof-of-concept tests for 5 cfm; achieve 5% Dehumidification (Fall 2023)

- Optimization and scale up to 200 cfm (Fall 2023)
- Technology Demo Unit
- Scale up analysis and integration with air handlers for commercial building applications

Team

- ACT Small business; R&D prototyping and new products development
- Large business; Manufacture 155,000 light commercial and JCI residential air-conditioning and heat pump units per year

Team Track Record (previous work):

(a) First-Principle Physic model

(b)CFD analysis (in OpenFoam)

(c) Prototype made by 3D AM of Vortical Flow Exchanger

Contribution of Each Team Members