

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Flexible HP WH with embedded energy storage

Oak Ridge National Lab PI: Kashif Nawaz (Senior R&D Staff) Presenter: Jian Sun (R&D Staff) (865) 241-0972 WBS 03.02.02.36, FY 21 AOP Water Heating R&D

Project Summary

Objective and outcome

- The project is focused on the development and performance optimization for next-gen HPWH with embedded energy storage solution.
- Demonstration of cost-effective technology to enhance the performance through selection and deployment of energy storage medium.

Team and Partners

Oak Ridge National Lab Kashif Nawaz, Joe Rendall, Jian Sun, Ahmed Elatar, Jamieson Brechtl, Keju An, Xiaoli Liu

A.O. Smith

Steven Memory, Timothy Rooney

<u>Stats</u>

Performance Period: Dec 2020- June 2024 DOE budget: \$300k/year, Cost Share: \$250k Milestone 1: Alpha prototype enables at least 20% higher capacity (Oct. 2021) Milestone 2: Lab demonstration of Betha prototype with at least 5% improvement (Oct. 2022) Milestone 3: Field demonstration of Epsilon prototype for more than 4 hours load shifting (Ongoing)

Problem

- Space constraints in some applicaitons
- HPWH are unable to meet the demand through the baseoperation (HP) requiring ancillary heat through electric heaters (Hybrid configuration)
- Potential solutions through the deployment of suitable thermal energy storage medium are required for cost-effective load shifting.

Annual emissions from water heating technologies

https://www.nrdc.org/experts/pierre-delforge/electric-heat-pumps-can-slash-emissions-california-homes

Alignment and Impact

- A highly flexible water heating technology
 - Improved capacity (Higher FHR)- 20% higher capacity with same footprints
 - Reduced carbon emission (~60% compared to electric resistive and 10% compared to hybrid HPWH)
 - At least 30% cost saving compared to state of the art
- Enabling development for Grid-interactive Efficient Buildings
 - At minimum 4-hours of load shifting capability for medium and higher usage patterns
 - Embedded energy storage solution (no engagement of additional vendors)
 - Reduced required maintenance due to compact design
- Implications for additional processes
 - Residential air cooling/heating, refrigeration, Process water heating
- At least <u>250TBtu energy saving</u> in water heating technology.
 - Aligned with BTO goal to develop energy efficient technology to cause 45% energy saving by 2030 compared to 2010 technologies with at least 40% reduction in CO₂ emissions.

Phase 3- System optimization and demonstration

Approach

- Experimental validation of PCM heat transfer
- Prototyping to reduce component number while keeping heat transfer performance high

Progress: Experimental Prototype Alpha

- Higher FHR by 30%
- Best FHR/Nominal heating power
- Large Surface area on spheres
- Heat losses significant (UEF failed)

Progress: Experimental Prototype Beta

- Few capsules
- Distributed internal fins
- Lower heat losses (passed UEF)
- No improvement to FHR

Progress: Epsilon Design Updates

Surface area = 5 m²

- Design has large surface area and high Reynolds number
- 3D printed flexible allow for density tuning of the capsules
- Discussing with manufacturers for mass production of the capsules
 Re ~ 10,000

		Hot water heater technology	Nominal storage (gallons)	FHR Rating	UEF Rating	Reynolds Number	Surface Area (m ²)
	HE1 Orifice	Baselined HPWH (208 V)	50	60.1			
- 1	Onnice	Baselined HPWH* (208 V)	50	61	3.90		
* o o	Ď	Baselined HPWH (240 V)	50	69.2	3.63		
0		Prototype Alpha HPWH* (208 V)	56	79	2.78	10,000	5
000	HE2 Cold water inlet	Prototype Beta HPWH (240 V)	50	69.0	3.86	250	3.2
\langle	Reynolds ~ 5,000	(Estimated) Epsilon HPWH (240 V)	50	75	3.5	10,000	5

Development of Model-Based Co-simulation Platform

U.S. DEPARTMENT OF ENERGY

OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

Simulation Results

TC3: mid-low HPWH tank water tempertaure TC12: tempertaure at inlet cold water tempertaure (the location of TC6, TC3, and TC12 refer to Figure 6)

U.S. DEPARTMENT OF ENERGY

OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

test: lab test results

Simulation Results – demand response control

- Peak period (3.5 hours)
 - 11:30 and 15:00
- Dead band increased 5°C
 - Lowest temperature 48°C (118 °F)
- 2.5% less energy consumed*
- Draw profile from UEF medium usage

* Energy required shifted into the next day

Cost Analysis

Lifetime Cost (for 16 years): Initial Cost (equipment + installation) + Operation Cost

- All water heaters are 50-gallon capacity
- Retail costs of water heaters are from A.O. Smith
- HPWH_{PCM} results are obtained through

experiments (UEF and FHR)

- Monthly Hot Water Draw (gal/day) and Energy Consumption (Btu/month) are obtained by 'EERE(Energy Efficiency and Renewable Energy Office) 2017'

Year

- Future energy costs are referenced by 'Annual Energy Outlook' (EIA 2022) (Ref: https://www.eia.gov/outlooks/aeo/)

Future Work

Experimental Study

- Encapsulation mass manufacturing
- Testing spheres for density control
- Epsilon performance testing

Modeling and Control

- Optimization of the sphere geometry and fin number
- Control optimization

Publications and Intellectual Property

• Conference proceedings or presentations

- Sun, J., Nawaz, K., Rendall, J., Brechtl, J., and Elatar, A., "Model-based Co-Simulation of Heat Pump Water Heater with Embedded Phase Change Materials Thermal Energy Storage," *Herrick Conferences*, 2022.
- Rendall, J., Asher, W., Brechtl, J., Li, K., Yang C., Sun, J., and Nawaz K., "Experimental Results of Density Controlled Phase Change Material Capsules for Increased First Hour Rating for Heat Pump Water Heaters," *Herrick Conferences*, 2022.

• Journal publications (*submitted*)

- Sun, J., Nawaz, K., Rendall, J., Brechtl, J., and Elatar, A., "Heat pump water heater enhanced with phase change materials thermal energy storage: modeling study" submitted to *ICHMT*, 2023
- Rendall, J., Elatar, A., and Nawaz, K., "A comprehensive review: phase change materials for system integration and optimization in domestic heat pump water heaters," submitted to *Renewable and Sustainable Energy Reviews*, 2022.
- Rendall, J., Brechtl, J., Nawaz K., Elatar, A., Sun, J., An, K., Liu, X., and Asher, W., "Experimental Results of Density Controlled Phase Change Material Capsules for Increased First Hour Rating for Heat Pump Water Heaters" In Review – *ICHMT*, 2023

• Patent applications

 Rendall, J., Nawaz, K., Asher, W., Elatar, A., Sun, J., Brechtl, J., Liu, X., An, K., Zhang, M., "Density controlled phase-changing materials (PCM) spheres for increased heating power and optimal delivery temperature in hot water tanks" *patent application* US 20230082570A1, 2023.

Thank you

Oak Ridge National Lab

Kashif Nawas (Senior R&D Staff)

(865) 241-0972

WBS 03.02.02.36, FY 21 AOP Water Heating R&D

ORNL's Building Technologies Research and Integration Center (BTRIC) has supported DOE BTO since 1993. BTRIC is comprised of 60,000+ ft² of lab facilities conducting RD&D to support the DOE mission to equitably transition America to a carbon pollution-free electricity sector by 2035 and carbon free economy by 2050.

Scientific and Economic Results

236 publications in FY22
125 industry partners
54 university partners
13 R&D 100 awards
52 active CRADAs

BTRIC is a DOE-Designated National User Facility

REFERENCE SLIDES

Project Execution

	FY2021			FY2022			FY2023					
Planned budget		300K			300K			300K				
Spent budget		300K			150K			100K				
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Past Work												
Q1 Milestone: Literature Review												
Q2 Milestone: Downselection of TES Materials			•									
Q3 Milestone: Alpha Prototype Construction				Þ								
Q4 Milestone: FHR Testing Showing 20% Savings (G/NG)												
Q2 Milestone: CFD Analaysis of Alpha Design												
Q3 Milestone: Beta Prototype Construction												
Q4 Milestone: FHR Testing Showing 5% Increase (G/NG)												
Current/Future Work												
Q1 Milestone: Market Analysis												
Q2 Milestone: CFD Capsule Optimization												
Q3 Milestone: Epsilon Testing: Increase UEF & FHR												
Q4 Milestone: Epsilon Field Testing: Shift 4 hr Load												

Team

Kashif Nawaz

Bo Shen

Joe Rendall

Steve Memory

Jiamin Yin

Ahmed Elatar