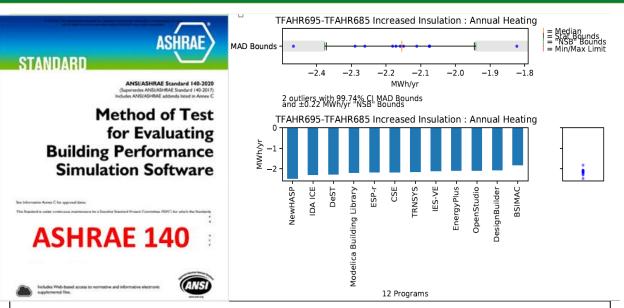

ASHRAE 140 Development and Maintenance

Argonne, Oak Ridge, Pacific Northwest National Laboratories PI: Dr. Ralph T. Muehleisen rmuehleisen@anl.gov WBS 3.5.5.51


Project Summary

Objective and outcome

Continue development and maintenance of ASHRAE Standard 140 "Standard Method of Evaluating Building Performance Simulation Software" to improve BEM software, increase confidence in BEM software, improve consistency of code and above code calculations, increase investment in energy efficiency and decarbonization measures

Team and Partners

- Argonne National Laboratory
 - Big Ladder Software, GARD Analytics, J. Neymark & Associates, Thermal Energy System Specialists
- Pacific Northwest National Laboratory
 - Karpman Consulting
- Oak Ridge National Laboratory

<u>Stats</u>

Performance Period: 10/2022 – 9/2025 DOE budget: \$3450k, Cost Share: \$0k Milestone 1: Acceptance Criteria Milestone 2: Whole Building Test Suite Milestone 3: Test Result Automation

Problem: Industry uses BEM and so BEM needs validation

Energy Codes, Ratings, Tax Incentives, and Rebates

- ASHRAE 90.x, IECC, CEC, NYC, Chi
- LEED, Passive House, WELL
- 179D, 45L, ZERH
- State and Utility Incentive Programs: NYSERDA, CEC, ComEd, PG&E, ...

Designers and Engineers

- Understand performance
 differences in design tradeoffs
- Select and size HVAC equipment and storage
- Estimate, emissions, and LCC
- Demonstrate compliance

	•••
>_	

BTO/EERE/DOE

- Technology roadmapping
- Technical assistance (e.g., BPS)
- Pathway planning

- All these users rely on the building energy modeling (BEM) software and so there needs to be a standard way to validate the accuracy of BEM software
- And for BEM software developers to improve BEM software

Solution: ASHRAE 140 "Method of Test for BEM Software"

(Supersedes ANSI/ASHRAE Standard 140-2017) Includes ANSI/ASHRAE addenda listed in Annes C

Method of Test for Evaluating Building Performance Simulation Software

- A "framework" for BEM software test evolution
 - Analytical: comparison to known closed form solutions
 - Comparative: comparison among software
 - Empirical: comparison to experimental data
 - Tests organized into suites of base cases + deltas
 - Detailed specifications
 - Testing reveals BEM discrepancies and need for additional tests
- First published in 2001 thermal fabric heat transfer
 - Now on 3-year continuing maintenance
 - Based upon DOE/IEA developed BESTEST Methods
- From 2004-2020
 - Thermal Fabric and Load, 2001 version updated 2020
 - Space Cooling and Heating Equipment
 - Airside HVAC Equipment
 - "Class II" limited testing for residential building software

Shortcomings of ASHRAE 140

Development of test suites was slow: only 5 new suites in 14 years	Test suites focused more on diagnosing software algorithm differences than establishing criteria for software accuracy	Many common systems and components in 90.1 designs are not in 140	These three are all
Creating 140 models, extracting out results, and putting them in reporting spreadsheets was extremely manually intensive	No empirical validation test suite i.e. no "ground truth to measurement"	No pass/fail criteria, only comparison results between selected software	noted in Karpman et al "Building Performance Modeling Tools Physics and Sensitivity Testing in Support of Compliance Modeling" PNNL-33183, 2022.
Limited guidance for "users" like codes and rating systems on how to use and cite 140	Stakeholder engagement typically limited to ASHRAE SSPC 140 committee meetings	140 test cases are dramatically simpler than typical designs modeled in 90.1 PRM	

Problems Identified in Compliance Modeling Sensitivity Report

• Karpman et al 2022 "Building Performance Modeling Tools Physics and Sensitivity Testing in Support of Compliance Modeling

Excerpt from Table 5: Space Cooling

Component	oonent System/Component/ Controls Description				
	Chilled water	No			
Cooling Source	DX	Yes			
	Evaporative	No			
	Centrifugal	No			
	Positive displacement				
	(reciprocating, scroll and				
Chillor Type	screw)	No			
Chiller Type	Absorption chiller	No			
	Gas engine driven chiller	No			
	Heat pump chiller	No			
	Heat recovery chiller	No			
Chilled Water	Air-cooled	No			
Condenser Type	Water-cooled	No			
Other	Cooling tower	No			
Other	Fluid economizer	No			

Excerpt from Table S1: Proposed New 140 Tests

Tanna af tha Nam Tant	High	Medium
Focus of the New Test	Priority	Priority
Representative Buildin		
Multifamily, PRM baseline	X	
Multifamily, minimally code compliant design	X	
Multifamily, high-performance design		Х
Medium office, PRM baseline	X	
Medium office, minimally code compliant design	Х	
Medium office, high-performance design		х
Diagnostic Unit Te	sts	
Interior daylighting	X	
Exterior daylighting		
Comparative air-side HVAC tests (Air-side HVAC BESTEST		
Volume 2)	X	
Exhaust air energy recovery	Х	
Air-side HVAC controls	•	
Optimal start	Х	
Supply air temperature reset	X	
Variable speed drives	X	
Static pressure reset	X	
Demand-controlled ventilation	Х	
Air-side HVAC systems		
Dedicated outdoor air system	X	
Perimeter radiation		х
Variable air volume with parallel fan power boxes		
Padiant nanals and shilled/sealed hears		

Alignment and Impact

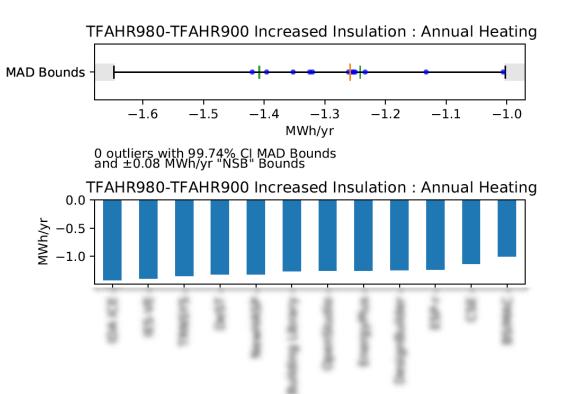
Improved and More Cited ASHRAE 140 Leads to Improved BEM and Increased Confidence in BEM

- More Use of BEM in Design
- Stricter Energy/Carbon Codes
- More Rigorous Compliance
- Expanded Utility Programs
- Better And More Trusted TA
- More and better BEM jobs

- More High Performance Bldgs
- Lower Costs For High Performance Bldgs (Especially Important For Disadvantaged Communities)
- Decreased Energy Use, Cost, and Emissions

Risks and Mitigation Strategy

Risk	Mitigation Strategy
140 not used/cited by codes and ratings because it lacks tests reflective of performance rating methods	• Develop more realistic whole building modeling test suite with a focus on tests that are reflective of modeling used in performance rating methods (PRM)
New Acceptance Criteria (AC) not actually used/cited by codes and ratings	 Work with codes and ratings groups to update references to 140 and help write changes to properly cite using AC Develop User Manual with a section devoted to regulators and code officials for understanding and citing 140
Testing software with ASHRAE 140 is too cumbersome for software developer industry	 Develop automation tools and workflows to make it easier for vendors to run 140 test suites Develop User Manual with a section devoted to developing 140 models and workflows


Approach

Acceptance Criteria	User Engagement	New Test Suites
Develop Pass/Fail Acceptance	Organize and Host	Develop and Run Field Trials
Criteria	Stakeholder Meetings	for New Test Suites
Develop clear pass/fail for software to allow for identification of weak software Develop a clear target for software improvement Update the criteria as new tests are added and as software improves	Get direct input on development needs from stakeholders like Software Developers, AHJs, Regulators, Code Developers, Utility Program Managers, etc. Rotate meetings between focus groups so meetings produce useful and in-depth dialog between participants	Speed development by streamlining approach, and modeling and reporting requirements Expand physics and systems tested to improve software and better meet needs of codes and standards

Progress: Acceptance Criteria

- Acceptance Criteria Published in Jan 2023
 - Pass/Fail Criteria based, in part, on advanced statistics (median absolute deviation)
 - Purpose is to weed out really weak software
 - Currently Includes Thermal Fabric, and Airside, Cooling, and Heating Equipment Test Suites
- Updating references by 90.1, 189.1, IECC, LEED, et al.
 - Updates are necessary to ensure codes et al.
 require passing the new Acceptance Criteria
 - Found that ASHRAE 140 is cited more than we previously thought and cited inconsistently

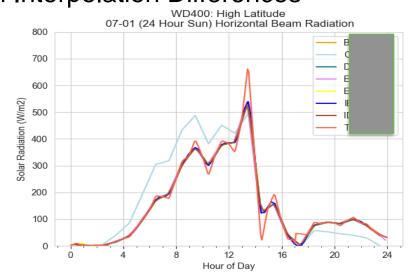
Example of an Acceptance Criteria Test for Change in Heating Energy from Increased Insulation

Unofficial results → vendor names redacted (but they know who they are)

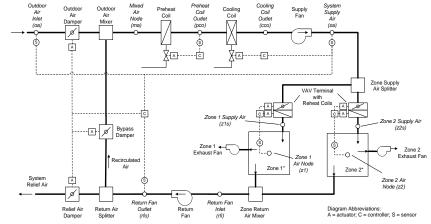
Progress: Acceptance Criteria

- Passing AC Requires Passing 90% of Selected Tests in the Selected Test Suites
 - Passing a Given Test Requires Being Within Bounds Determined from a Statistical Analysis of Reference Software Results and "Non-Statistical" Physics based Bounds

							.,			
Total_tes	1									
10	10	10	10	10	8	10	10			
11	11	9	9	11	8	11	11			
21	21	19	19	21	16	21	21			
18	Yes	Yes	Yes	Yes	No	Yes	Yes			
Thermal Fabric High Mass Pass Results using MAD with 99.74% CI										
Total_tes	1									
9	8	7	9	9	6	9	9			
10	9	9	9	10	4	10	10			
19	17	16	18	19	10	19	19			
17	Yes	No	Yes	Yes	No	Yes	Yes			
	10 11 21 18 ermal Fal Total_tes 9 10 19	11 11 21 21 18 Yes Total_test 10 9 8 10 9 19 17	10 10 10 11 11 9 21 21 19 18 Yes Yes 18 Yes Yes Total_test 9 8 7 10 9 9 19 17 16	10 10 10 10 11 11 9 9 21 21 19 19 18 Yes Yes Yes Total_test 9 8 7 9 10 9 9 9 10 17 16 18	Total_test 10 10 10 10 11 11 9 9 11 21 21 19 19 21 18 Yes Yes Yes Yes Image: Stress of this stress stres	10 10 10 10 8 11 11 9 9 11 8 21 21 19 19 21 16 18 Yes Yes Yes No 18 Yes Yes Yes No 10 10 10 16 16 18 Yes Yes Yes No 10 10 10 9 6 10 9 9 10 4 19 17 16 18 19 10	Total_test 10 10 10 10 8 10 11 11 9 9 11 8 11 21 21 19 19 21 16 21 18 Yes Yes Yes Yes No Yes ermal Fabric High Mass Pass Results using MAD with 99.7 Total_test			

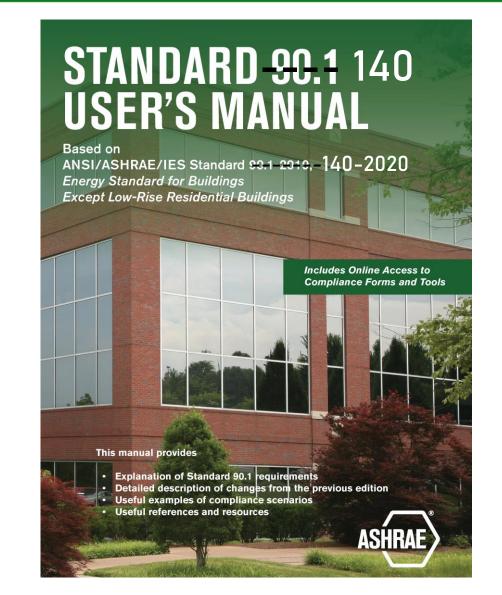

Thermal Fabric Low Mass Pass Results using MAD with 99.74% CI

Progress: New Test Suites

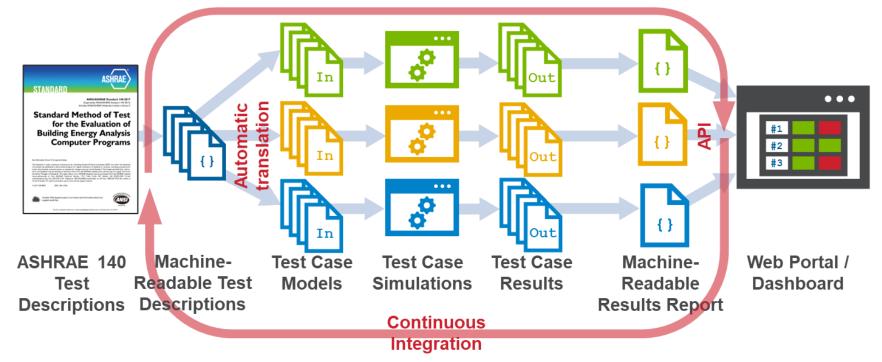

Completed Weather Drivers Test Suite

- Published 2022 as 140-2020 Addendum A
- Identifies software problems like improperly interpolating solar radiation into sub-hourly timesteps
- Started Airside HVAC System Test Vol 2
 - More realistic VAV system with reheat
 - Directly addresses need in PRM report
- Developed recommendation document for reorganization of standard and suggestions for developing new test suites
 - Facilitate easier new test suite additions
 - Current test procedures too manually intensive

Plot of variation of Horizontal Beam Radiation from Interpolation Differences



System Schematic for Airside Vol 2 Tests


Progress: User Manual

- Developing a User Manual for at least three distinct audiences
 - Authorities Having Jurisdiction (AHJs) and regulators + other standards on why and how to cite ASHRAE 140
 - Software vendors who run 140 tests on how to create the test suite models and how to use them for diagnostics
 - Building Performance Modelers on how to create models to a specification and diagnose problems in models
- Expected publication in Fall 2023 or Spring 2024

Progress: ASHRAE 140 Automation

- Develop workflows to help vendors perform and submit ASHRAE 140 testing
 - More vendors wanting to be part of field trials
 - Improve timeliness of validating software against 140
- Completed one stakeholder meeting
- Automating processing of test outputs to generate comparison reports and charts

Eye to the Future: Empirical Validation

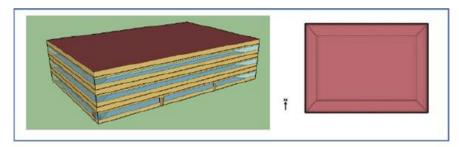
- Other DOE Projects are completing experiments and analysis designed specifically for Empirical Validation
 - These are some of the most accurate building energy experiments ever made and have been developed specifically for "ground truth" testing in 140
 - Projects finishing development of specifications ready for 140 field trials
 - 140 project team expected to take first specs to field trial in Fall 2023

ANL & JNA: ETNA

Single Zone Shoebox

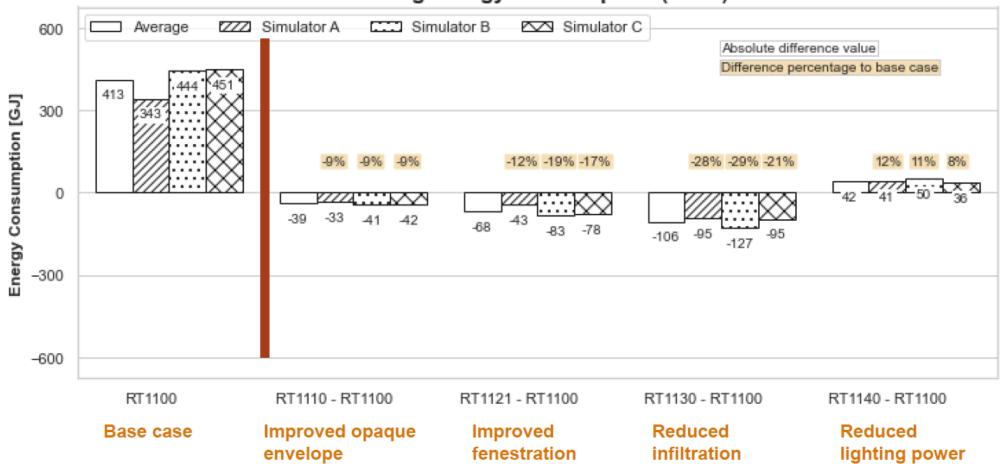
NREL & JNA: iUnit

Single Zone Apt


ORNL & ANL: FRP

Multizone VAV

Eye to the Future: Whole Building Test Suite (WBM)


- PNNL is leading a team from PNNL, ORNL, and ANL to develop a new whole building test suite for 140
 - Current tests are diagnostic, use "shoebox" models
 - Test suite reflective of PRMs (e.g., 90.1 Appendix G)
 - More realistic buildings and HVAC systems
 - ECMs/sensitivity tests that mimic PRM methods
- First suite uses medium office building type
 - Adapted from 90.1 prototype model
- Year 1 progress: Proved feasibility via internal trial using 3 most popular BEM programs (EnergyPlus, DOE-2, IES)
- Future
 - Finalize spec and start field trials with several software vendors
 - Add delta tests to cover more equipment, ECMs, and diagnostics
 - Start work on 2nd WBM Test Suite: High-Rise Multifamily

Section 5.6.2: Envelope and 7 Section 5.6.2.1: Opaque En RT1110 5.6.2.1.1 In RT1111 5.6.2.1.2 In Section 5.6.2.2: Fenestration RT1120 5.6.2.2.1						
Section 5.6.2: Envelope and 2 Section 5.6.2.1: Opaque En RT1110 5.6.2.1.1 In RT1111 5.6.2.1.2 In Section 5.6.2.2: Fenestration RT1120 5.6.2.2.1	Loads Tests velope Tests nproved opaque envelope					
Section 5.6.2.1: Opaque En RT1110 5.6.2.1.1 In RT1111 5.6.2.1.2 In Section 5.6.2.2: Fenestration RT1120 5.6.2.2.1	velope Tests nproved opaque envelope					
RT1110 5.6.2.1.1 In RT1111 5.6.2.1.2 In Section 5.6.2.2: Fenestration RT1120 5.6.2.2.1 In	nproved opaque envelope					
RT1111 5.6.2.1.2 In Section 5.6.2.2: Fenestration RT1120 5.6.2.2.1 In						
Section 5.6.2.2: Fenestration RT1120 5.6.2.2.1 In	uproved opaque envelope with t					
RT1120 5.6.2.2.1 In	iproved opaque envelope with					
	on Tests					
RT1121 56222 II	ncreased fenestration area					
1111111 0.0.2.2.2	nproved fenestration solar and t					
RT1122 5.6.2.2.3 II	nproved fenestration solar and t					
fe	enestration area					
Section 5.6.2.3: Infiltration	Tests					
RT1130 5.6.2.3.1 R	educed infiltration rate					
W	Veather dependent infiltration al					
R	educed infiltration rate and wea					
nal Lo	ad Tests					
R	educed lighting power					
R	educed lighting power and runti					
oved J	oved Envelope and Loads Test					
In	Envelope and Loads Test					

Whole Building Test Suite Results So Far

Example Comparison of Heating Energy Savings from Various ECMs

Heating Energy Consumption (Delta)

Reorganize the Standard

More Stakeholder Meetings

More Test Suites

Update Acceptance Criteria

Complete User Manual

Implement First Automation

- Make it easier to add test suites and addenda
- Expect to publish reorg by Spring 2024
- AJH's / Regulators, Software Vendors
- Multizone Diagnostics
- Weather Driven Infiltration
- Add new test suites and output types to criteria
- Update acceptance ranges as software improves
- Expect to publish Fall 2023 or Spring 2024
- tion Expect to release sometime in 2024

Thank You

Argonne, ORNL, PNNL PI: Dr. Ralph T. Muehleisen, Chief Building Scientist, Argonne rmuehleisen@anl.gov WBS 3.5.5.51

REFERENCE SLIDES

Project Execution

		FY2022			FY2023				FY2024			
Planned budget												
Spent budget												
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Past Work												
Q1 Milestone: 140-2020 CM Revision Published												
Q2 Milestone: Stakeholders Meeting												
Q3 Milestone: Weather Drivers Published					,							
Q4 Milestone: Acceptance Criteria Published												
Q1 Milestone: Reorg and Roadmap Plan Deveveloped												
Current/Future Work												
Q3 Milestone: Whole Building Suite Field Trials Start												
Q4 Milestone: Stakeholder Meeting												
Q4 Milestone: Users Manual Published												

Team

ANL, PI Ralph Muehleisen

ANL Jeannie Kim

BLS Neal Kruis

GARD Jason Glazer

GARD Mike Witte

JNA


Joel

Neymark

TESS

Tim

McDowell

PNNL Jian Zhang

ORNL Piljae Im

PNNL Yan Chen

ORNL

Sungkyun Jung

PNNL Doug Maddox

KC Maria Karpman

EERE/BTO goals

The nation's ambitious climate mitigation goals

Greenhouse gas emissions reductions 50-52% reduction by 2030 vs. 2005 levels

Net-zero emissions economy by 2050

Power system decarbonization 100% carbon pollutionfree electricity by 2035

Energy justice 40% of benefits from federal climate and clean energy investments flow to disadvantaged communities

EERE/BTO's vision for a net-zero U.S. building sector by 2050

Support rapid decarbonization of the U.S. building stock in line with economyide net-zero emissions by 2050 while centering equity and benefits to communities

Increase building energy efficiency

Reduce onsite energy use intensity in buildings 30% by 2035 and 45% by 2050, compared to 2005

Accelerate building electrification

Reduce onsite fossil -based CO₃ emissions in

buildings 25% by 2035 and 75% by 2050,

4

Transform the grid edge at buildings

compared to 2005

Increase building demand flexibility potential 3X by 2050, compared to 2020, to enable a net-zero grid, reduce grid edge infrastructure costs, and improve resilience.

Prioritize equity, affordability, and resilience

Ensure that 40% of the benefits of federal building decarbonization investments flow to disadvantaged communities

Reduce the cost of decarbonizing key building segments 50% by 2035 while also reducing consumer energy burdens

Increase the ability of communities to withstand stress from climate change, extreme weather, and grid disruptions