Reduced Cost Heat Pump Space- And Water-Heating in Cold Climates

LBNL, ORNL, Emanant Systems, TRC, GTI Energy, Harvey Mudd College lain Walker, Staff Scientist iswalker@lbl.gov WBS 3.2.2.61

Project Summary

Objective and outcome

Objective is to lower the cost to provide heat and hot water in cold climate MF buildings

The outcome will be a low-GWP air-to-water combined heat pump combined with multi-temperature thermal energy storage that reduces installed costs by 20-30% and operating costs by 40%

Team and Partners

LBNL: Iain Walker, Armando Casillas, Spencer Dutton Harvey Mudd College: Dre Helmns ORNL: Kashif Nawaz GTI: Kaushik Biswas, Navin Kumar TRC: Jingjuan Dove Feng, Gwelen Paliaga, Amin Delagah Emanant Systems: Jonathan Woolley

<u>Stats</u>

Performance Period: 10/1/2022 to 10/1/2025 DOE budget: \$3,000k Cost Share: \$1078k Milestone 1: Complete mechanical design of modular R744 combi HP with low-cost PCM TES Milestone 2: Complete laboratory testing of modular R744 combi HP with low-cost PCM TES Milestone 3: Complete summary presentation on results from field evaluation

Problem: Decarbonizing cold-climate multifamily buildings

Biggest energy use/CO₂ emissions from heat and hot water Replace current gas DHW/boiler systems with Heat Pumps Performance Issues:

- Poor low temperature capacity and efficiency
- High peak electric demand

Cost issues

- Installation: electric infrastructure + multiple devices
- Operating costs: often electricity more per kWh

Alignment with DOE Goals

1. Lower costs to increase deployment at scale and make decarbonization available to lower income households

2. Enable demand flexibility by storing energy for use at peak times

3. Primary application in about 3 million non-electric cold climate MF buildings (could be extended to other 5 million non cold climate MF and also SF homes)

4. Performance goals:

- Reduce energy use for heat and hot water by 40% in cold climates
- Reduce upfront costs by 20-30%
- Reduce grid impacts by reducing peak demand by >70%

Approach – Combi HP with low-cost PCM TES

Combine into modular packaged unit:

- **1.** Low GWP (R32 or CO_2 (R744)) cold climate heat pumps
- 2. Heat and DHW into one unit space saving
- 3. Thermal Energy Storage (TES) less electric upgrades, grid integration

Approach – Heat pump

- Low power heat pump: no new electric circuits/panels/utility service drops – saves \$1,000s.
- 2. Heat pump using CO_2 that has very low GWP (= 1) and good low temperature performance (UEF = 3.75, SCOP = 2.9)
- Full capacity performance and high COP with heating design temperature of -15 to -5° F
- 4. Hydronic systems need 190 deg F supply water for retrofit/compatibility

Approach – Thermal Energy Storage

Staged PCM:

- increases system efficiency at low temperatures
- enhance compatibility with operating temperatures for low GWP heat pumps
 - Low water return temp high temperature output
- shifts energy use off-peak
- allows low-capacity HP system output not HP output

Energy dense: 25-50% of H2O equivalent Low cost: <\$20/kWh) salt hydrate

Inexpensive polymer heat exchanger

Approach - Engineered Packaged System

Approach – Project Outline

- 1. Market research on cost reduction for HPs multifamily cold climate HPs
 - Build on previous California Energy Commission project by TRC
- 2. Model and design a packaged CO₂ combi HP with refrigerant-to-PCM TES
- **3.** Staged prototype development and validation:
 - Field evaluation of R32 HP with PCM TES in cold climate (Massachusetts) – Emanant Systems, LG & Sunamp
 - 2. Design, fabricate and lab test staged TES and CO_2 HP prototype - GTI
 - 3. Field evaluation of CO_2 combi air-to-water HP with PCM TES in cold climate multifamily building

Approach – Key Challenges

FEASIBILITY?

- 1. Multi-temperature phase change materials and polymer PCM-refrigerant heat exchanger require considerable prototype development .
- 2. Lack of engineered solutions combining the heat pump, heat exchangers, and thermal storage into a packaged easy to install unit.
- 3. Lack of existing control strategies

Technical risks and mitigation strategies are:

- 1. Failure to realize theoretical performance improvements identify alternatives and options for improvement
- 2. Failure to develop PCM compatible with CO2 heat pump choose an alternate low GWP heat pump
- 3. Failure to find a field testing site identify more than one possible site and begin site search early in the project
- 4. Failure of prototype in field testing *repair and retest and include fail-safe systems (e.g. existing or additional back-up heating infrastructure)*

Overview of previous modelling [Modelica]

Modeled 3 buildings x 3 systems

	Baseline Gas + Electric	Baseline All Electric	Proposed System		
Retail store	AC + Furnace	AAHP	AWHP + ECS		
(HVAC)		(+ ECS)	+ PCM TES		
Classroom (HVAC)	AC + Furnace	AAHP (+ ECS)	AWHP + ECS + PCM TES		
Apartment	AC + Furnace	AAHP + HPWH	AWHP		
(HVAC+DHW)	+ Tankless DHW	(+ ECS)	+ PCM TES		

40% less energy80% less peak demand70% lower power requirement

Feasibility

Overview of previous modelling [950 ft² Apartment Unit in Minneapolis, MN]

Major benefits of the combi system:

- reduces HP capacity by 60% while still providing space and DHW comfort
- reduces peak demand by 40-80% compared to baseline all-electric
- enables grid response, reducing electricity consumption by 40-60% during shed periods

Feasibility: Low GWP heat pump status

LG ThermaV

- R32 refrigerant
- Operation to -25°C (-13°F)
- Leaving water temperature 65°C (149°F)
- Heating, cooling, and domestic hot water
- Not commercially available in US
- Ongoing conversations with LG

SanCO2

- CO₂ refrigerant
- Operation to -32°C (-25°F)
- Leaving water temperature 65°C (150°F)
- Commercially available HPWH
- Occasionally used in combi systems
 - E.g. Harvest Thermal

Feasibility: Thermal storage

- Proprietary material composition
- Food grade sodium acetate trihydrate
- Several sizes available
- Many nominal phase change temperatures available
 - R32 field site uses 58°C (136°F)
 - Project goal: Cascaded system
- Fin-tube heat exchangers embedded in PCM reservoir
- Also available with integrated electric resistance heat
- Currently introducing products in the United States
- Some installations in Europe using heat pumps

Feasibility - Modularization

Streamlined modular hydronic system design

- Hydronic fan coil units and radiant floor
- Simple to retrofit wall and ceiling mount fan coil units
- Quiet variable speed DC motor fans
- Daisy chain low voltage power for all fan coil units & zone valves
- PEX distribution to fan coil units
- Modular, factory built, hydronic subcomponent assemblies
- Pump stations, manifolds, and hydraulic separators
- Insulated assembly housings
- Stand-alone sub-assembly controls
- Constant pressure variable speed pumps
- Thermostatic mixing valves
- Wireless controls for all pumps, zone valves, and fan coil units
- Lightweight home automation provides controls integration

Feasibility – Team Experience & Domain Knowledge

Approach – beyond prototype development

- Analyses to monetization of upstream benefits in Forward Capacity-, Demand Flexibility-, and GHG markets
- Create publicly available simulation tools to support design, sizing, and control
- Present at conferences and in journal articles
- Potential for IP and invention disclosures
- ASHRAE seminars, the ACEEE Hot Water Forum, and ACEEE Summer Study. We will participate in various industry technical committees including ASHRAE TC 6.6 (Service Water Heating Systems), TC 6.9 (Thermal Storage), and TC 4.1 (Load Calculation Data and Procedures). We will also participate in the Advanced Water Heating Initiative.
- Project partners will participate in disseminating project results: LG, Small Planet Supply, InsolCorp, Senseware, Sunamp, ComEd, Consumers Energy, NEEA

Progress and Future Work

Project is still in start-up phase

Subcontracts are in place with partners after some delay

Some project deliverables shifted by a few months

Next steps:

- Identify multifamily field test site
- Commission R32 combi HP with PCM TES at a Massachusetts field demonstration site - COMPLETE
- Compile design drawings, tech references, and bill of materials for low-cost PCM TES fabrication
- Complete mechanical design of modular R744 combi HP with low-cost PCM TES
- Begin market assessment study

Thank You

LBNL, ORNL, GTI Energy, TRC, Emanant Systems, & Harvey Mudd College lain Walker Staff Scientist iswalker@lbl.gov WBS 3.2.2.61

REFERENCE SLIDES

Project Execution

	Reduced Cost Heat Pump Space- and Water-Heating in Cold Climates (Control Number L095-1577)											
		BP1 BP2 BP3										
		Q1 Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12
		1 2 3 4 5	6 7 8	9 10 11 12	13 14 15	16 17 18	19 20 21	22 23 24	25 26 27	28 29	30 31 32 33	3 34 35 36
	BP1			!								
	BP2							!				
	BP3								!			
Task 1: Admin		Task 1: Administrati	on, TAG & se	condary researd	ch							
1.1 Lit review	1.1											
1.2 TAG	1.2	М		M	M		M		M		M	
Task 2: Market research		Task 2: Market resea	arch on costs	for HP space- a	and water-heat	ting for mult	ifamily in co	ld climates				_
2.1 Structured interviews	2.1			Х	М							
2.2 Case studies	2.2						Х					
2.3 LCC evaluation	2.3							Х	М			
2.4 Cost compression study	2.4										Х	
Task 3: R32 system field evaluation		Task 3: Field evaluat	tion of R32 co	ombi air-to-wate	r HP with PCN	I TES in cold	l climate					
3.1 Commission system	3.1	М										
3.2 Install monitoring	3.2				Х	М						
3.3 Provide performance data	3.3				Х							
3.4 Modelica model validation	3.4					Х	М					
Task 4: Lab test low-cost system		Task 4: Develop a lo	w-cost PCM	TES and lab test	t with R744 co	mbi air-to-w	ater HP					
4.1 TES component model	4.1										Budget p	eriod
4.2 R744 HP component model	4.2										Task tim	eline
4.3 R744 system model	4.3										Su	btask
4.4 Multi-temp TES model	4.4		Х	М								
4.5 Prototy design	4.5			Х							Go/N	o-Go !
4.6 Prototype construction	4.6										Delive	rable X
4.7 Prototype lab testing	4.7				Х	М			_		Miles	stone M
4.8 Multi-temp TES model validation	4.8											
4.9 Publish multi-temp TES model	4.9							Х				
Task 5:R744 system field evaluation		Task 5: Field evaluat	tion of R744 (combi air-to-wat	er HP with PC	M TES in co	ld climate					
5.1 Site selection	5.1		M									
5.2 Baseline monitoring	5.2											
5.3 Detailed system design	5.3			X	M							
5.4 Model of system	5.4											
5.5 Monitoring plan	5.5					Х	М					
5.6 System installation	5.6											
5.7 System control tuning	5.7											
5.8 Field monitoring	5.8										м х	
5.9 Model validation	5.9											
Task 6: Refrigerant-to-PCM HX development		Task 6: Model and de	esign a pack	aged R744 comb	bi HP with refr	igerant-to-P	CMITES					
6.1 Heat exchanger model development	6.1											
6.2 System model development	6.2											
6.3 Model-based design	6.3								М			
6.4 Prototype design	6.4								Х			
Task 7: Tech transfer	_	Task 7: Engagement	t, market tran	sfer, and comme	ercialization a	ctivities						
 7.1 Conference presentations	7.1			M				М				М
 7.7 IP management	72											

Team

Lawrence Berkeley National Lab:

 lead project management, support modeling and simulation, lab testing, and field evaluation, publish results

Emanant Systems:

 lead system design and field evaluation, support market research, lab testing, and simulation validation

Harvey Mudd College:

 lead modeling and simulation, support system design, lead performance optimization

Oak Ridge National Lab:

• PCM TES heat exchanger design and fabrication for R744 HP integration, support performance optimization

TRC:

• lead market research, current costs and best practices for multifamily decarbonization

Gas Technology Institute:

 lead PCM TES and R744 HP integration, lab testing, support market research and field evaluation

