
Virtual Sensor-based FDD and Control Suite for Widespread Adoption of Residential Embedded-FDD Heat Pumps

Lawrence Berkeley National Laboratory Donghun Kim, Computational Research Scientist <u>donghunkim@lbl.gov</u> WBS: 3.2.2.58, FOA/Lab Call Number: L095-1573

Project Summary

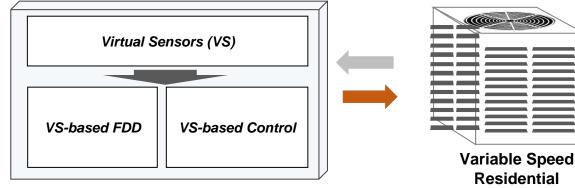
Objective

- Develop a technology to help disseminate residential heat pumps that have built-in FDD
- The technology is based on **virtual sensors** and aims to fully leverage the available sensor infrastructure, as well as the increased controllability of variable speed heat pump

Outcome

- Open-source Virtual sensor-based FDD & Control Suite
- A prototype of new heat pump system
- Laboratory performance test results

Team and Partners


OAK RIDGE National Laboratory

The UNIVERSITY of OKLAHOMA

Johnson Controls

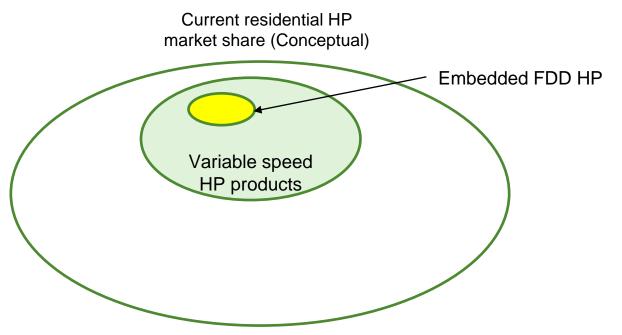
Target: (1) Increased FDD capabilities and reliability and (2) energy efficiency improvement, without adding additional sensors

Virtual Sensor-based FDD and Control Suite

<u>Stats</u>

Performance Period (**new project**): Oct/2022 – Sep/2025 DOE budget: \$1,300k, Cost Share: \$0 (Lab call) **Milestone 1:** VS development **Milestone 2:** VS-based FDD& Control Suite **Milestone 3:** Performance test results for prototype

Heat Pump

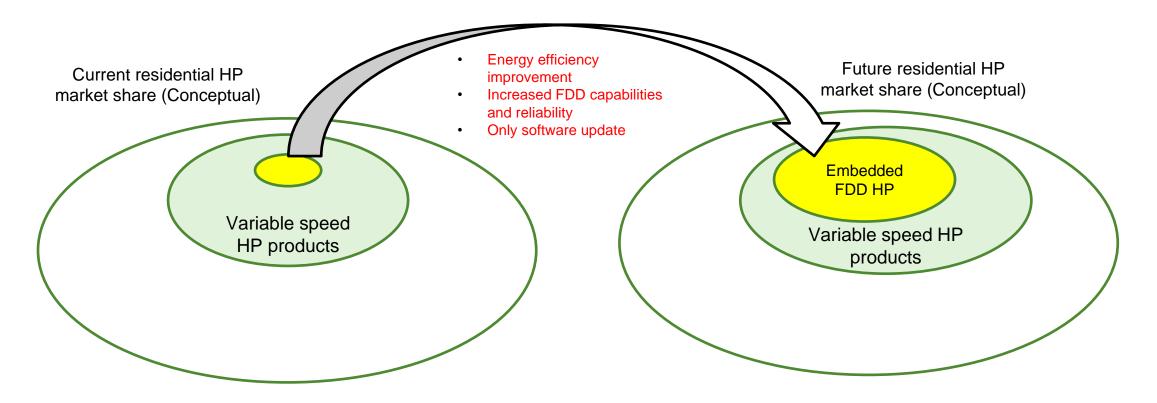

Problem Statement

All HP manufacturers have chosen to embed FDD

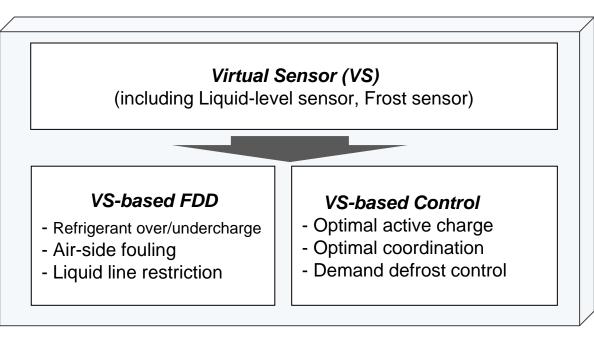
only in their premium variable speed HP models in the residential market [1]

This is because

- Incorporating FDD into low-tier products increases sensor/software/installation costs
- Homeowners are reluctant to bear the additional expenses for the FDD feature
- On the other hand, high-end products that feature variable speed compressors often come equipped with a built-in sensor network to monitor equipment reliability


^[1] Butzbaugh, J., Tidwell, A., & Antonopoulos, C. (2020). Automatic Fault Detection & Diagnostics: Residential Market Analysis (PNNL-30077). Pacific Northwest National Laboratory. <u>https://doi.org/10.2172/1670423</u>

Alignment and Impact


- Homeowners: reduced maintenance cost (due to FDD) + reduced bills (due to better controls+ FDD)
- Manufacturers: expanding the residential HP market (due to better efficiency)
- Utilities: reduced electrical load + monitoring capability to track energy efficiency
- States and federal governments: improved energy efficiency, facilitating electrification, and reduced carbon emission

Approach: we propose a solution that aligns with the industry's business decision

- Fully leverage the available sensor infrastructure and increased controllability of variable speed HP systems
 - To further improve energy efficiency and hence to **offset of the cost increment** for FDD
 - To increase FDD capabilities and reliability

Approach: we propose "Virtual Sensor based FDD and Control Suite" to achieve the goals based on previous research

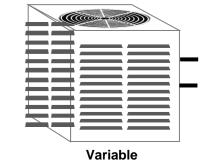
Virtual Sensor-based FDD and Control Suite

Sources of energy efficiency improvement

- By enabling zero-superheating while preventing refrigerant flood back, and optimizing the active charge by observing the liquid volume in the accumulator: around 10% efficiency improvement in recent lab tests
- **Optimizing coordination** between compressor and fan speeds: **5%** improvement in a prior test
- **Demand defrost control** is also possible by combining with VS-based FDD providing an additional overall efficiency improvement

The reliability/capabilities of VS-based FDD has been demonstrated for a variety of different VCSs including chillers, split-systems, packaged systems, HPs/ACs with various component combinations.

Overall Task Breakdown

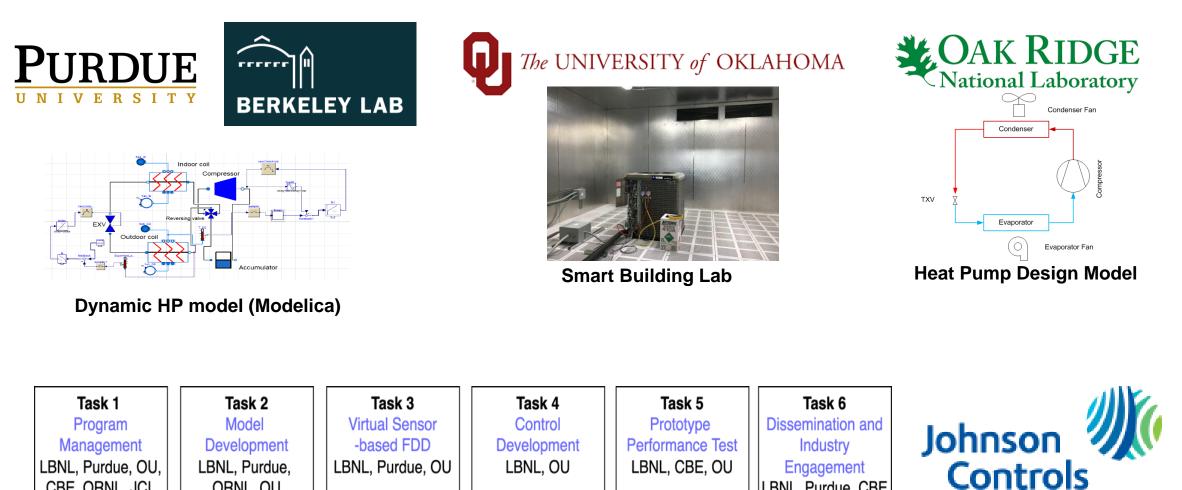

Task Name Task 1: Planning, Reporting, and Management Task 2: Development of **Dynamic HP Model** Task 3: Development of VSs, and **VS-based** FDD Task 4: VS & FDD-based Control Design Task 5: Performance Assessment Task 6: Dissemination and Industry

Modeling (Task 2) Compressor For compressive control testing FX Outdoor coil Accumulator Virtual Sensor Package (Task 3) (including Liquid-level sensor, Frost sensor) Control (Task 4) FDD (Task 3) Refrigeration charge Optimal active charge Air-side fouling Optimal SAT reset - Liquid line restriction Demand defrost control

Indoor coil

Virtual Sensor-based FDD and Control Suite

Multiple laboratory tests (Task 2-5) at each stage



Speed Residential Heat Pump

Engagement

Dynamic HP

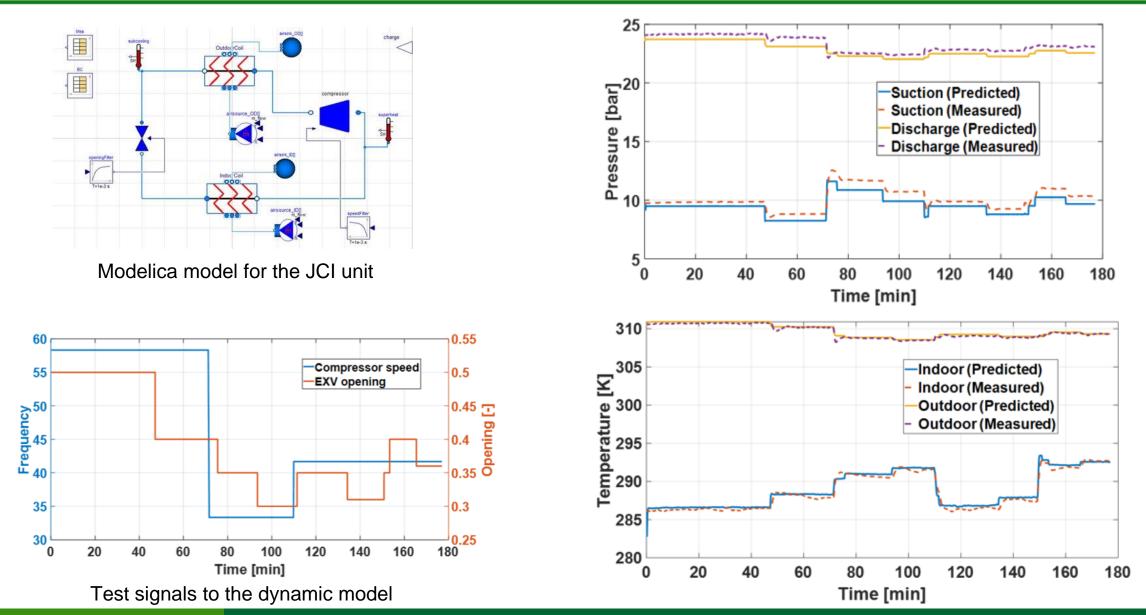
To effectively and timely carry out research tasks with reliability, this project engages

LBNL, Purdue, CBE

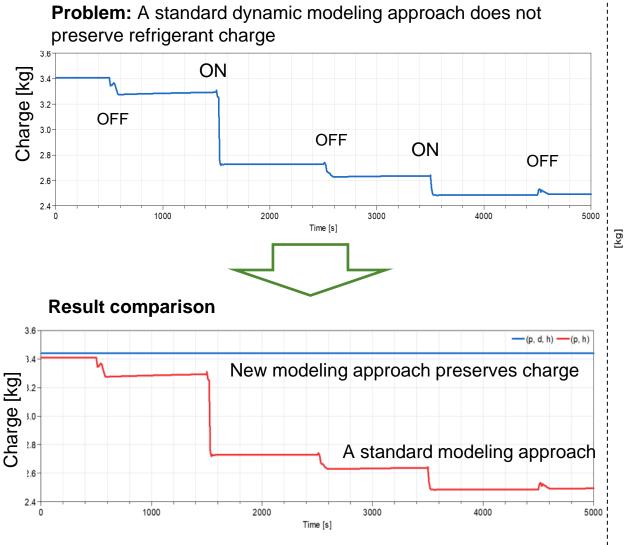
ORNL, OU

CBE, ORNL, JCI

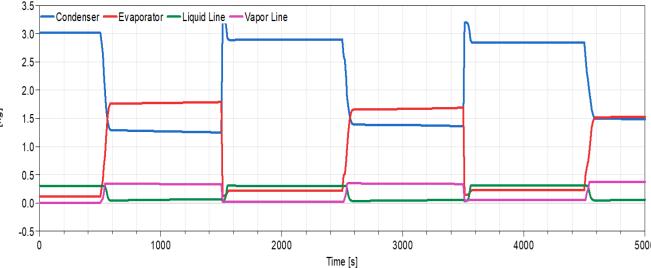
Dissimilation and Industry Engagement



Barriers, Technical Challenges, Project Risks & Mitigation

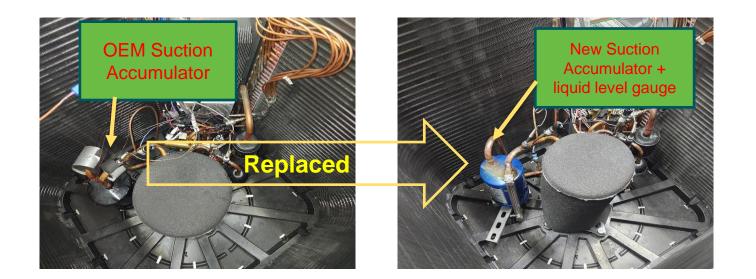

Technical challenges, Risk Descriptions	Response Plan
Unforeseen cost overruns in the deployment budget occur.	Leverage existing installation and facilities of our diverse team member and pursue to create synergistic projects within the CHPB and ASHRAE (Task 6)
A certain development step (e.g., virtual sensor development) does not perform well.	Immediately share and discuss the issue(s) in our team meetings and to resolve. If it is identified as unresolvable, find an alternative strategy through brainstorming : each team member has extensive experience in thermal systems
The test procedure development (Task 5.1) is not straightforward due to lack of standard procedures for evaluating controls (Task 5).	If the test procedure is not well established, switch to an alternative laboratory facility of our teams (ether FLEXLAB or Purdue Chamber) which can compare two systems under the same load conditions: load-based performance rating

A complete dynamic cycle model for cooling mode was developed and validated with measurements

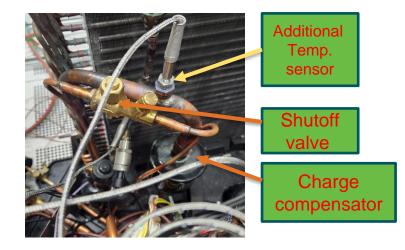


U.S. DEPARTMENT OF ENERGY

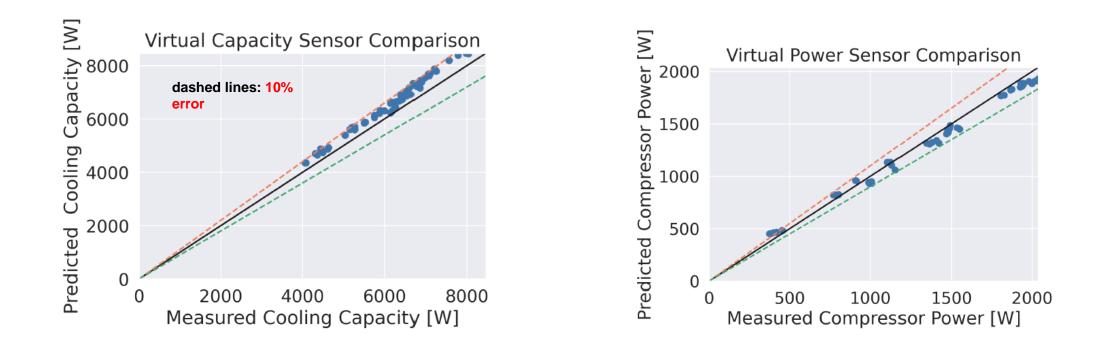
We resolved numerical issues for compressor ON/OFF cycling & mode switching



The new modeling approach also allows investigating charge migration during compressor cycling



We are upgrading and incorporating additional devices into the baseline HP


- Installed the suction accumulator
 liquid level gauge
- Installed additional pressure and temperature transducers needed for analysis
- Installed manual shutoff valve to isolate/re-connect charge compensator
- Completed pressure tests and two nitrogen-vacuum cycles to remove any moist air in the refrigerant circuit
- Reconfigured refrigerant mass flow meter to measure bidirectional flow

Implemented virtual power and capacity sensors, and compared with the OU's experimental data for the baseline HP unit (57 operating data points)

Confirmed that the information is available for the baseline HP unit

Compared the virtual refrigerant charge sensor with fault-free and faulty data for other units: VRC is insensitive to other faults and operating conditions

Future Work (FY23 - FY24)

LBNL	Complete validating VSs, VS-based FDD/Control using the simulation model and experiments				
	Perform final experiments				
ORNL	HPDM modeling for the JCI HP unit and comparison with experimental data				
Purdue	Cross validate the dynamic model with HPDM and experiments				
I UIUUC	Build a dynamic model for the JCI unit under frosting and defrosting conditions				
	Finalize experimental setup and perform lab tests				
OU	Develop and validate the virtual liquid-level sensor				
	Develop and test control using both simulation and lab tests				
JCI	Provide feedback on the project progress				
	Donnate the baseline HP product				

Thank you

Lawrence Berkeley National Laboratory Donghun Kim, Research Scientist <u>Donghunkim@lbl.gov</u> WBS: 3.2.2.58, FOA/Lab Call Number: L095-1573

Project Execution

Task Name		FY23				FY24				FY25			
		Q2	Q3	Q4	Q5	Q6	Q7	Q 8	Q9	Q10	Q11	Q12	
Task 1: Planning, Reporting, and Management												Final Report	
Task 2: Development of Dynamic HP Model	M2.1		M2.3	G/NG1									
Task 3: Development of Virtual Sensors, and Virtual Sensor-based FDD		M3.2			M3.4								
Task 4: Virtual Sensor & FDD-based Control Design						M4.2	M4.3	G/NG2					
Task 5: Performance Assessment									M4.5	M5.2	M5.3		
Task 6: Dissemination and Industry Engagement					M6.3			M6.2				M6.4	

Key Team Members

- LBNL: Donghun Kim (PI), Sang Woo Ham
- **Purdue University :** James Braun, Jiacheng Ma
- University of Oklahoma: Jie Cai,
- **ORNL:** Bo Shen
- Johnson Controls Inc: Roy Crawford
- UC-Berkeley, Center for the Built Environment: Hui Zhang

OAK RIDGE National Laboratory

Johnson Controls

Competitive Advantages

	Commercially existing embedded- FDD HP products	Academic state-of-the-art FDD or state-of-the-art controls	Proposed technology				
FDD capabilities	Vary depending on products	Refrigerant over/undercharge, leakage, refrigerant liquid-line restriction, air-side fouling	Isolated frost-level detection (from fouling) in addition to the state-of-the-art FDD				
Sensor costs for FDD	Proprietary, expected to be high	Low (only temperature sensors, cf. compressor speed info. is available for variable speed units)	Low (the same as the state-of-the art FDD)				
Real-time monitoring of energy efficiency	No (no products provide this, Butzbaugh et. al. 2020)	Yes	Yes				
Dynamic active charge control	No	Yes (Koeln & Alleyne, 2014) with a special liquid level detector	Yes, but with sensors for FFD (through the low-cost virtual liquid-level sensor).				
Energy efficiency	High because of the premium variable-speed unit	Higher (8~10% efficiency improvement for variable speed AC unit, Koeln & Alleyne, 2014, Liu & Cai, 2022)	Highest (target overall efficiency improvement of 15%)				
Defrost control	Either schedule-based or thermistor-based initiation, Mostly clock-based termination	Demand defrost mostly for initiation (Song et. al. 2017). Need additional sensor(s) such as evaporator temp. or temp. difference, pressure difference, infrared thermometer or photo- optical	Demand defrost for both initiation and termination. Use sensors for FFD				
Defrost energy	High	Low	Low (the same as the state-of-the-art control)				
Integrated FDD and advanced controls	No	No	Yes				
Product price for FDD	High	 Medium without advanced controls (due to reduced sensor cost) Very high with advanced controls 	Medium (the same as the state-of-the-art FDD)				
FDD scale-up potential for the residential market	Low (limited market: the current issue)	Low	Medium				