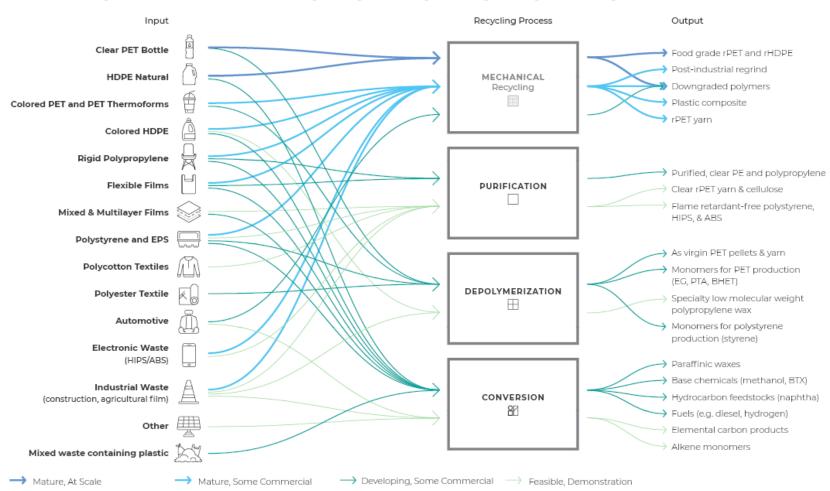
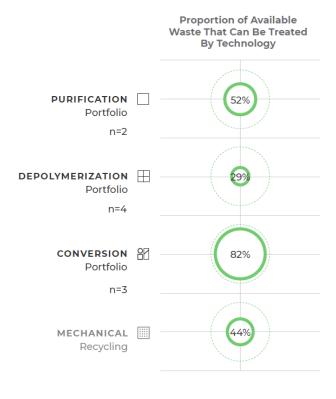
Molecular Recycling

Closed Loop Partners

What is molecular recycling?

Technologies that use solvents, heat, enzymes, and even sound waves to purify or break down plastic waste. Whether they are circular depends on the supply chain they connect to downstream.


	PURIFICATION	DEPOLYMERIZATION		CONVERSION	
		Partial	Full	Partial	Full
Main Polymer Inputs	Polypropylene (PP) Polyethylene (PE) Polystyrene (PS) ABS Molecular homogeneity in input is preferred to ensure high output quality ⁱ	Polyethylene terephthalate (PET) PP PE	PET Polyamide (PA) PS Polylactic acid (PLA) Poly(methyl methacrylate) (PMMA) Polyurethane (PU)	Mixed (PE, PP, and PS preferred)	• Mixed
Features of Reaction	Polymer bonds are not broken	Limited chain scission Limited side reactions	Full chain scission Usually chain-end scission reactions (where monomers are removed one-by-one) ²	Random chain scission Side reactions such as cyclisation	All bonds broken including C-C and C-H Initial products of process are not hydrocarbons (e.g. syngas from gasification or carbon from flash-joule heating)
Typical Technology Outputs	Colourless polymer flakes or pellets	Oligomers Polypropylene wax Polyethylene wax	Monomers, e.g. monoethylene glycol (MEG) & purified terephthalic acid (PTA) Solvents Polyethylene waxstyrenic polymers	Crude oil Naphtha Paraffinic waxes Alkenes (ethylene & propylene) BTX Diesel and other fuels	Syngas (carbon monoxide and hydrogen mixture) Methanol Elemental carbon
Features of Products	Molecular structure of polymers are unchanged from the input material	Specific molecular products (oligomers, narrow distribution waxes)	Specific molecular products (monomers)	Products consist of mixtures of molecular species, often separated into fractions Relatively wide distribution of product molecular weight	Specific molecular products which are often fed directly into another reactor to produce other chemical products such as methanol or hydrocarbons
Technology Process Types	Solvent Extraction, De-inking	Enzymatic Degradation, Microorganis Ammonolysis), Pyrolysis, Hydrotherm	Gasification, Flash Joule Heating, Plasma-arc Gasification		


Source: Figure 6 in CLP's 2021 Report

What do these diverse technologies process?

MORE THAN PLASTIC PACKAGING WASTE

% OF PACKAGING EACH CATEGORY CAN ADDRESS

What are the environmental impacts to make recycled plastic again?

SUMMARY OF SYSTEM-LEVEL IMPACTS BY TECHNOLOGY CATEGORY

(i.e. the impacts when the outputs of these technologies are brought back to plastic resin)

		Total Natural Resource Energy ² (NREt)		Climate Impact Potential (CO ₂ e)	
		MJ / kg Plastic Pellet	% Change vs Virgin System	kgCO₂e / kg Plastic Pellet	% Change vs Virgin System
PURIFICATION [
	Portfolio average	28.8	U 59 %	1.6	O 20 %
	Range	22.0 – 35.6	4 7 % to 0 70 %	1.2 – 2.0	介 7 % to ⊍ 45 %
DEPOLYMERIZATION H					
	Portfolio average	46.7	O 38 %	2.5	O 12 %
	Range	18.0 – 68.1	● 17 % to ● 72 %	1.1 – 3.5	0 % to ⊙ 36 %
CONVERSION 🖁					
	Portfolio average	35.8	. 47 %	2.8	0 7 %
	Range	12.6 – 59.1	0 14 % to 0 80 %	1.2 – 4.4	介 22 % to ூ 26 %

What else is important to measure?

 MASS YIELD OF TECHNOLOGY'S SUPPLY CHAIN

 CHEMICAL INPUTS AND PROCESSES AVOIDED

