
Scalable Smart Lighting Platform

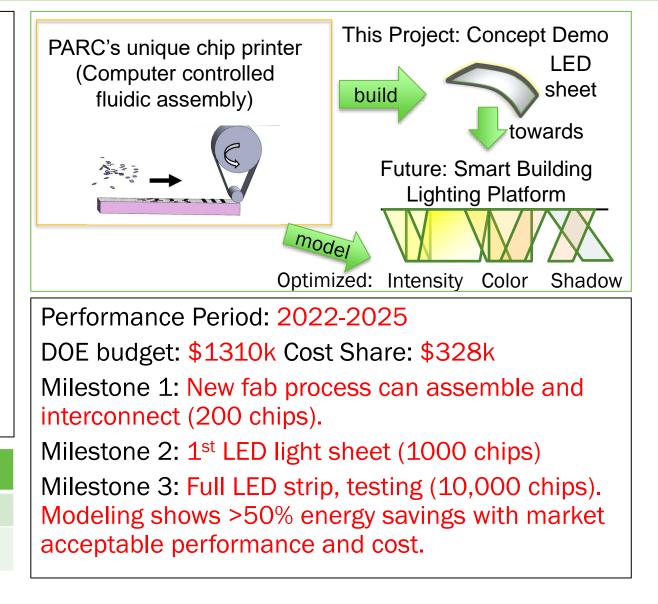
PARC, InnoSys, Inc, Wendy Davis Eugene Chow, Principal Scientist & Strategy Leader at PARC Phone: 650-812-4184, Email: echow@parc.com New Project: Agreement DE-EE0009693, BENEFIT2020

Project Summary

A Smart Lighting Platform Goal

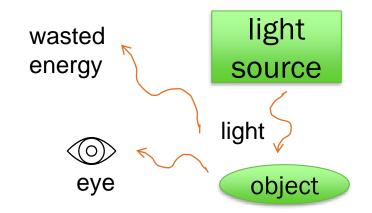
Save >50% building lighting energy. Dynamic, customized, directional light fields. Integrated, chip-based sensing and control. Thin, large area, flexible format

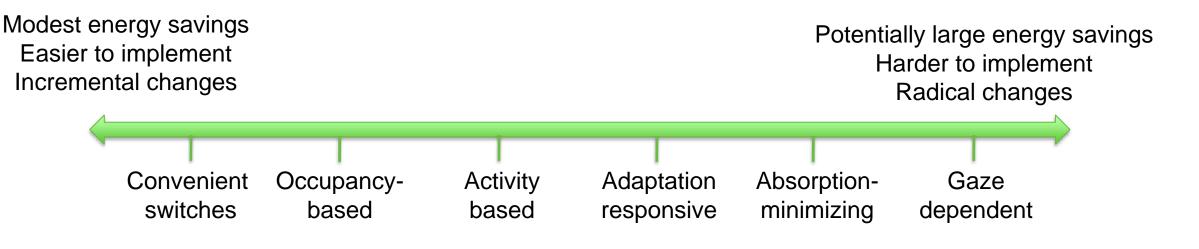
Key Barrier:


Fabrication cost. Need high chip count heterogeneous systems of millions of LEDs and other semiconductor chiplets.

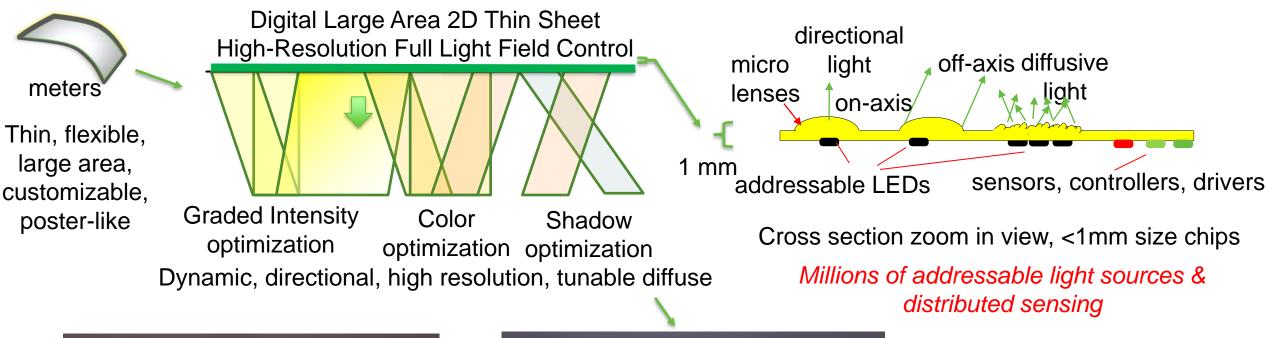
This project:

1) Model energy, performance cost tradeoffs.


2) De-risk cost by showing scalability of new chip printer process. Demo a thin flexible LED light sheet.


PARC	Project lead. Fab process, demo, modeling			
Innosys	Support demo design, phosphor			
Wendy Davis	Advise modeling, market			

Problem – Light Application Efficiency (LAE) Unrealized


- Lighting consumes 18% of building electricity but most generated photons wasted as do not reach eyes
- 3x energy reduction gain possible through light application efficiency with smart directional/timed sources.¹ Gaze dependent most energy savings potential, but hardest to implement. Need new capability.

J.Y. Tsao, M.H. Crawford et al., Adv. Optical Mater. 2 (2014), 809.

Vision - New Smart Lighting Building Platform

Future

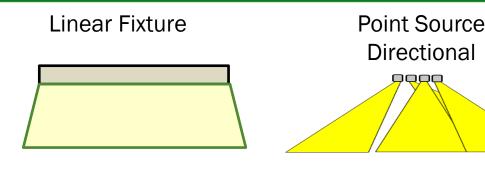
Optimized light application efficiency New platform 50% less energy for office case

Current

Alignment and Impact

Achieving Project Goals Enable Much Future Building Energy Savings

- Advance smart light sheet concept (LAE)
 - Build 1st concept demonstrator
 - 2-3x energy reduction possible for 18% of building electricity (lighting)
- More LED adoption by enabling attractive, thin, diffuse, flexible form factor
 - >2 quads saved if remaining non-LED linear & low/high bay fixtures convert to LED
 - >5 quads saved if rest of lighting markets also converts to LEDs
- Future cost reduction, mass adoption possible
 - PARC printer 1000x lower cost potential than current approaches


Success Definition

- Show >50% energy savings, cost tradeoff
- Show scalable high chip count fab possible with basic LED light sheet demo.

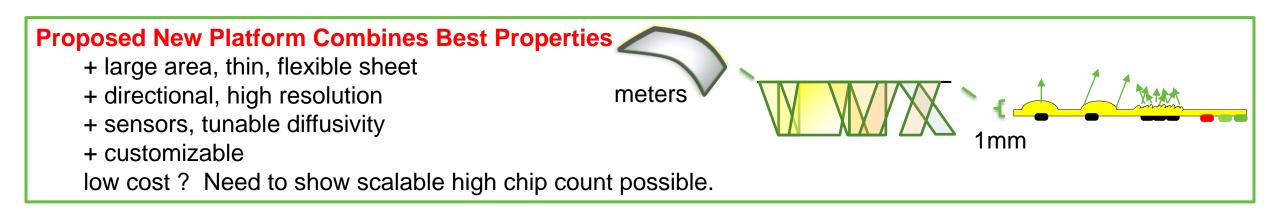
Broader DOE Impact Potential

- <u>Smart building platform extendable to new</u> <u>functionality with heterogeneous IC chips</u>
 - <u>Sensing people, environment...</u>
- PARC's microchip printer beyond lighting. High part count heterogeneous systems/materials.
 - Semiconductor/photonics, computation, large area sensors (solar etc), microstructured materials, 2D materials, energetics...

Approach: Current Light Sources Limited

No direction control+ low cost, currentmarket leader

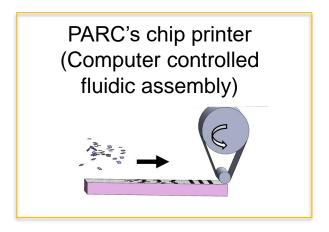
- High glare
- Bulky
- Not diffuse
- + Directional


LumiCurve

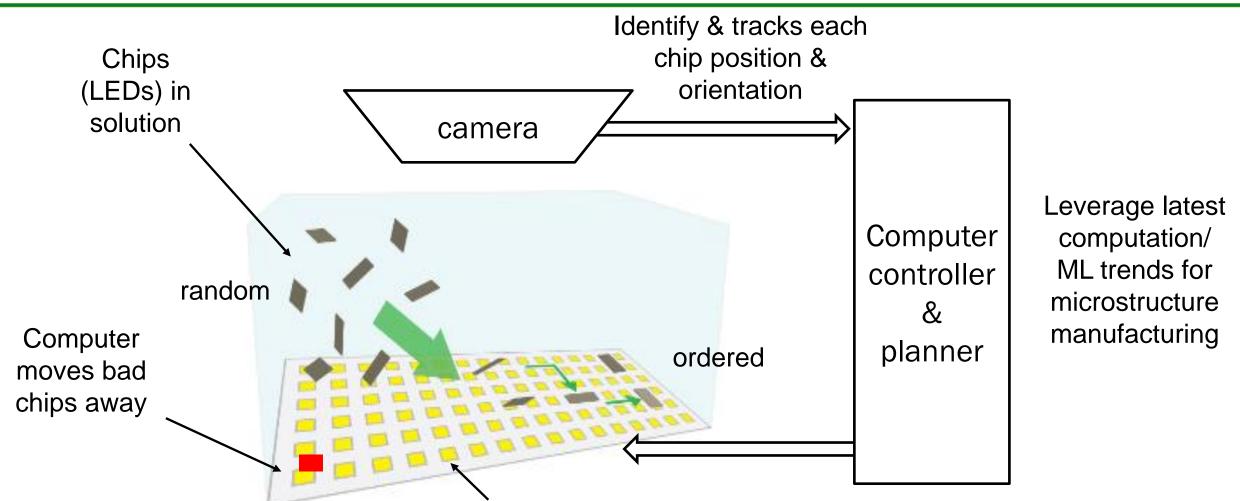
- No direction control
- No sensors
- Poor robustness
- Poor customization
- Not tunable
- High cost
- + Diffuse, thin, flexible

LightPipe

- No direction control
- No sensors
- + Diffuse, thin, flexible
- + Low cost

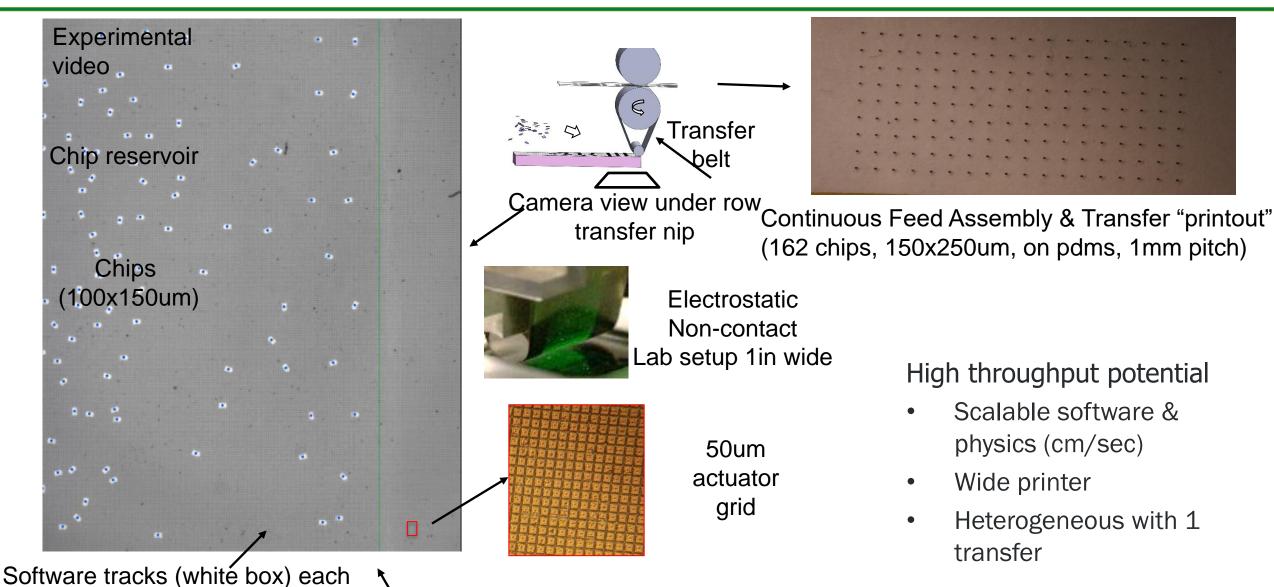

Approach: Manufacturing Cost Key Barrier

- Need millions of heterogeneous semiconductor microchips (per square meter) on thin flexible substrates
 - $_{\odot}$ Current million chip systems >\$10⁵
 - Assembly costs >>\$10⁴ should reduce to ~\$1 for lighting market mass adoption


• Existing fabrication not scalable to low cost

- High chip count approaches are high cost & slow (robotic pick/place, laser, stamp)
- Other (non-PARC) fluidic assembly approaches have low-cost potential but low yield, not heterogenous.

- PARC's new chip printer process has low-cost scaling potential
 - Designed for chip "ink"
 - Xerographic printing \$1/m²



New : Software directed electrostatic microassembly

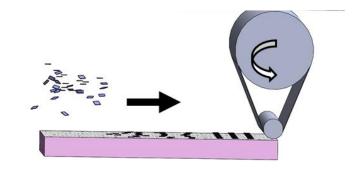
Active matrix electrode array generates dynamic electric force fields to individually direct chips in parallel to target locations, enabling sorting, defect healing, heterogeneous.

Computer Assembly Integrated With A Transfer Belt

chip and moves chip to transfer U.S. DEPARTMENT OF ENERGY

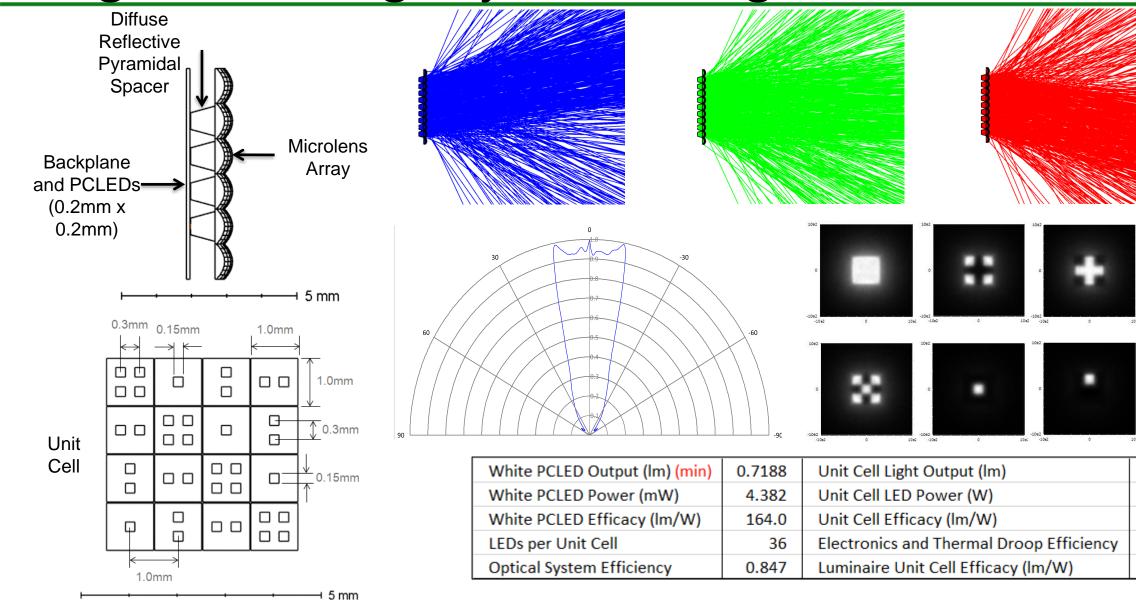
Row transfer line

#	Goal Type	Goal	Budget Period 1	Budget Period 2	Budget Period 3		
1	Experimental	Improve assembly printer system to show scalability for low cost. Demo thin, white light LED sheet.	200 chips (interconnect process)	1000 chips (white light sheet)	10,000 chips (full LED strip & testing)		
2	Modeling	Show large energy savings of new directional light sheet, customizable platform, and cost tradeoffs.	light output model	energy savings for key use cases	cost sensitivity versus energy savings		


- Majority of resources planned for experimental goals (#1)
- Improve process to scale # of chips key challenge
 - 100x more assembly and 1000x more interconnects than PARC's prior work

10

10

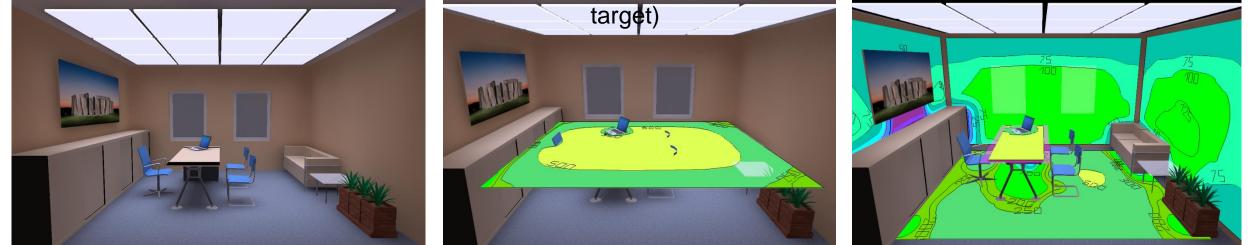

Approach: Challenges & Strategy

- Challenges
 - Low-cost with high chip count system and yield
 - Mitigation: Prioritize yield understanding early
- Business strategy
 - Build manufacturing tool, sell smart lighting sheet
 - Engage investors/customers in lighting/display with modeling, demos
 - Leverage LED display hot trends
- How will demonstrate benefit
 - Modeling shows energy savings and cost tradeoffs
 - Experiments show low-cost potential with new chip printer process.

12 Progress - Modeling a Dynamic LED Light Sheet

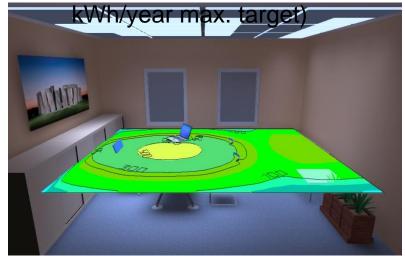
21.9

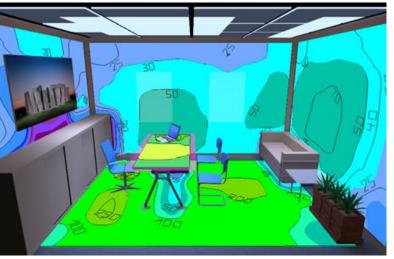
0.158

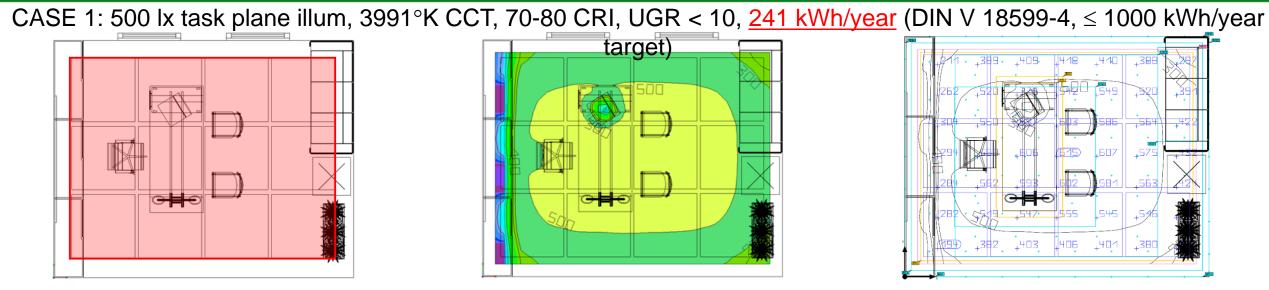

138.9

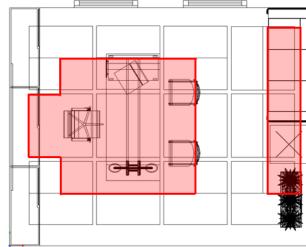
0.80

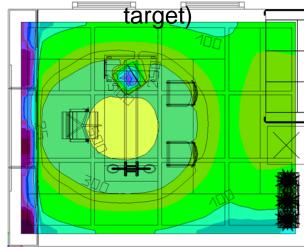
111.1

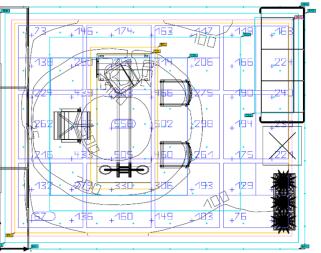

¹³ Modeling Shows 50% Energy Savings for Office Example


CASE 1: 500 lx task plane illum, 3991°K CCT, 70-80 CRI, UGR < 10, 241 kWh/year (DIN V 18599-4, ≤ 1000 kWh/year

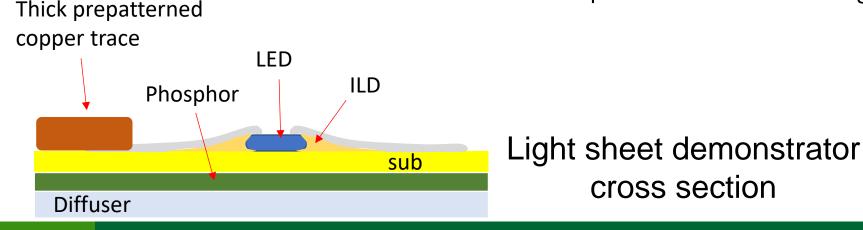

CASE 2: 500 lx task plane illuminance, 3991°K CCT, 70-80 CRI, UGR < 10, <u>122 kWh/year</u> (DIN V 18599-4, ≤ 1000






¹⁴ Comparison: 5m x 4m x 2.8m Basic Office Space Example

CASE 2: 500 lx task plane illum, 3991°K CCT, 70-80 CRI, UGR < 10, <u>122 kWh/year</u> (DIN V 18599-4, ≤ 1000 kWh/year



Progress and Future Work

- 3 of 4 milestones for BP1 (of 3) achieved
 - Designed final demonstrator
 - $_{\circ}$ Improved chip printer loading
 - Modeled directional light sheet
 - showed 50% energy savings, office case
- Unexpected Issues/Lessons
 - $_{\circ}$ $\,$ NCE for support tool failure
 - HW/SW system challenging

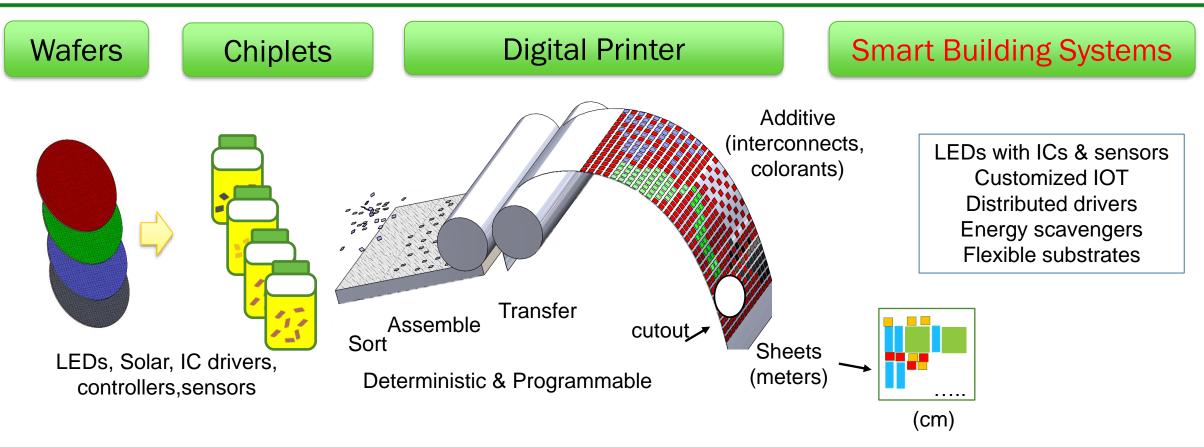
- Remaining Project Plans
 - Build 1st electrically interconnect LED array, 1st white light sheet, final demonstrator.
 - Increase # chips 100x, # interconnects 1000x over PARC's prior work.
 - No new project changes anticipated
- Plans beyond end of the project
 - $_{\odot}~$ Raise funds, mature tech, start company.
 - Build production tool, high chip count product based on LED light sheets

THANK YOU

Scalable new manufacturing process Optimized Light Efficiency

Microchip "ink"

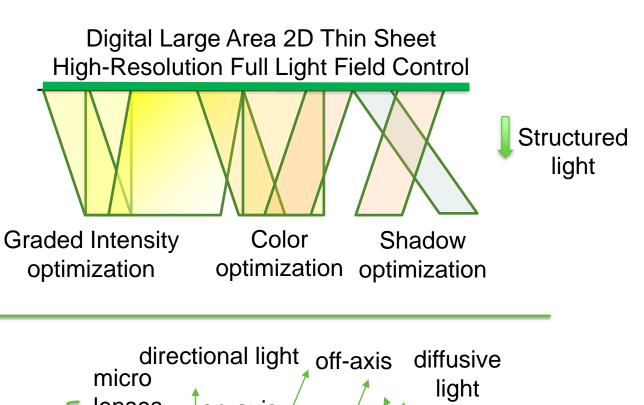
PARC, Innosys and Wendy Davis PI Eugene Chow, PhD, PARC Principal Scientist & Strategy Leader 650-812-4181, echow@parc.com New Project: Agreement DE-EE0009693, BENEFIT2020

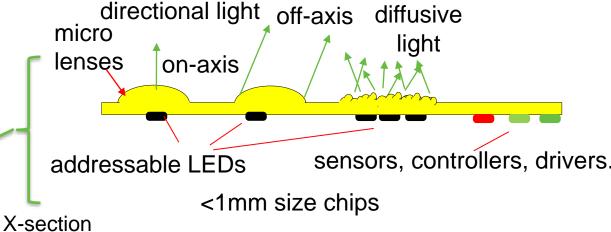

REFERENCE SLIDES

Project Execution

	21	FY2022 292		FY2023			FY2024 529				FY2025 364 0						
Planned budget (\$k)	11			442													
Spent budget (\$k)			292		84			0									
	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Past Work Milestones																	
Q1 Design demonstrator																	
Q2 Loader					\bullet												
Q4 Light output model																	
Current/Future Work Milestones																	
Q3 1st interconnect run																	
Q1 Interconnected LEDs																	
Q2 1st white light sheet																	
Q3 1000 chips interconnected																	
Q1 Full LED test strip																	
Q2 LED test strip testing																	
Q3 Improve yield																	
NOF									-	4							
NCE					Go/No-Go:			200 chips				1000 chips 10,00					
Did 1 st modeling milestone early		90/N				(1 st intercor				conne	onnects) (1 st			light sheet) (final der			
																P	erforma
										•	🕨 pla	nned o	date				Cost M

Who	Org Type	Project Role
PARC	50 yr old industrial research lab, 1 st laser printer & 1 st personal computer	Lead project, Improve chip printer process to demonstrate 1st light sheet. Perform modeling.
Innosys	Small minority owned company	Support light sheet design, phosphor integration
Wendy Davis	Consultant, lighting application expert	Guide modeling specs for market acceptance
Lumileds, others	LED vendors	Supply LEDs


Vision: Microassembly Printer for Smart Systems


- High throughput & low cost, heterogeneous of small chips (10-500um). Millions of chips.
- Digital sort chips, custom patterns, rapid prototyping
- Goal disruptive low cost of printing (\$2/m² for assembly & interconnect), *independent of number of devices*
- Smart Light Sheet Cost design, chips, substrates/optics & testing (assembly & interconnects negligible)

Vision – A New Smart Building Lighting Platform Enabled by High Chip Count Systems

- Ideal source: light field generator
 - Arrays of LEDs/lenses with programmable directional, fine scale control
 - Diffuse, low glare desired for market adoption large area source
 - Sensing, control, drivers..
 - Thin, flexible adaptable form factor
 - Customizable & Low cost

- Need high chip count system platform
 - Millions of heterogeneous semiconductor chiplets on a flexible substrate. Current tools can't build.
 - Need a new assembly integration manufacturing method

meters