Cadmium-Free Quantum Dot Building Blocks for Human Centric Lighting, DE-EE0009692

Prime Recipient: Joseph Treadway, OSRAM Opto Semiconductors, Co-PI: Jonathon S. Owen, Columbia University Co-PI (FFRDC): Emory Chan, Molecular Foundry, Lawrence Berkeley, National Lab

Joseph Treadway, Senior Staff Manager (503) 501-7067 / (304) 712 – 5861 Joe.treadway@ams-osram.com

OSRAM Opto Semiconductors

Columbia

UNIVERSITY

Objective

At a high level, this project at completion will have demonstrated a cyan-enhanced 4000K (MDER>0.7, CRI > 90) white down-converted on-chip device with high efficacy (210 Im/W). This efficacy and these color metrics will be achieved using quantum dot and phosphor hybrid solutions based on cadmium-free quantum dots. This will require generation of a cyan dot as well as a red dot capable of withstanding challenging on-chip conditions. It will also require choice of an optimum commercially viable LED emitter chip and solution development to optimize color quality and efficiency.

Overall, the most significant challenge we face is the inherently poor *chemical* stability of nano-III-V structures. This instability makes it difficult to passivate the particles with larger bandgap epitaxial layers. More importantly, it currently prevents application of a stabilizing amorphous oxide layer. We will focus on control of QD morphology and faceting to generate hardened QDs that will be compatible with oxide passivation.

Budget Summary

	BP	P 1 B		P 2 BP		3	То	Total	
	Federal Share	Cost Share	Federal Share	Cost Share	Federal Share	Cost Share	Federal Share	Cost Share	
Prime Applicant	\$255,185	\$265,335	\$255,185	\$265,335	\$0	\$0	\$546,370	\$530,670	
Columbia	\$481,060	\$25,000	\$481,663	\$25,000	\$0	\$0	\$962,723	\$50,000	
LBNL	\$190,173	\$0	\$196,598	\$0	\$0	\$0	\$386,771	\$0	
Total	\$926,418	\$290,335	\$933,446	\$290,335	\$0	\$0	\$1,895,864	\$580,670	
Cost Share %		24%		24%		0%		23%	

Project Partners

Dr. Joseph Treadway – OSRAM Opto Semiconductors

- Particle passivation (ZnS, oxide)
- LED solution development
- Device fabrication and optical testing

Dr. Jon Owen – Columbia University

- Synthetic design and practice, kinetics, mechanism
- Particle faceting and epitaxy
- Microscopy, X-ray techniques particle characterization

Dr. Emory Chan – Lawrence Berkeley National Lab

- High-throughput robotic screening and chemical optimization
- Kinetic modeling
- TEM

The DOE of course

Chemical hardening prior to encapsulation (OSRAM, Columbia)

Optimization of synthetic parameters Kinetic modeling to drive innovation (LBNL)

Scale up / validation ZnS passivation (OSRAM with Columbia)

> Oxide Encapsulation Barrier Device fabrication and testing (OSRAM)

- Intelligent and innovative LEDs, spectral and ambient light sensors that form the backbone for human-centric lighting (HCL)
- HCL to optimize daylight patterns, manage circadian rhythms, improve productivity and performance, mental and emotional well-being
- Smart lighting managers to create more costeffective, accurate and tunable lighting
- Spectral and ambient light sensors add competence to room monitoring systems increasing the comfort and well-being

What is Human-Centric Lighting?

Ideally, we address the needs of different customers at the component level

 HCL looks beyond efficacy, at the visual and non-visual effects of light on people in a given setting

Designed to produce or suppress certain physiobiological effects

□ Produces the right spectrum light for the setting and/or group of people

Light for Adults – Office

Light for Elders – AMD

Strategic Roadmap for Human-Centric Lighting

Innovative LED components to enable all aspects of Human Centric Lighting

Human centric lighting is the art of creating lighting that mimics the natural daylight that drives our bodily functions

Improves the circulation of oxygen-rich

blood, promoting faster healing of deep

tissues and relieving pain.

- **Emotional** Consumers have a positive feeling e.g. tunable white towards warm white in the living room.
- Rational Professionals have a positive perception e.g., high CRI values, high efficacy
- Biological real biological effects which can be evaluated by action spectra e.g. CIE S 026 ipRGC-Influenced Responses to Light or IR light

HCL: Targeting the Melanopic Response

- **Photopic curve** is related to the luminous sensitivity of the eye
- Melanopic action spectrum is related to the sensitivity of the intrinsically-photosensitive retinal ganglion cells (ipRGC), specific to the generation of melatonin
- The focus for LED development has been mainly to get the highest efficacy, which is tuning to the photopic curve
 - > This has led to the so-called "cyan gap", with a low melanopic daylight ratio

HCL: Targeting the Melanopic Response

Lighting to support circadian rhythm

Mood elevation

Vision

Well-being

• Healthier & higher performing humans (school, workplace, etc)

Non-visual effects of light

Productivity

Perception

Visual effects of light

- Cyan enhanced: Energizing, high melanopic ratio spectrum to improve productivity and efficiency during work hours
- Full spectrum, CCT tunable: Broad spectrum High CRI to provide a near-todaylight environment

Alertness

Information

Concentration

WELL Building Standard: L01 Light exposure L02 Visual lighting design L03 Circadian lighting design L04 Electric light glare control L05 Daylight design strategies L06 Daylight simulation L07 Visual balance L08 Electric light quality L09 Occupant lighting control

Project Targets

- Final Device Goals: CRI 90, CCT = 4000K, 210 lm/W
- Achieve the final device goals by developing new QD nanomaterials:
 - \rightarrow Make them "Green"
 - Develop a new class of heavy-metal free materials
 - \rightarrow Make them Cyan
 - Tune the wavelength through quantum size effects
 - \rightarrow Make them bright
 - Optimize crystal structure and ligand chemistries to achieve high conversion efficiencies
 - \rightarrow Make them stable
 - Apply barrier layers around each QD to allow for on-chip operation

Layer	Materials	Focus	
Core	InP or InGaP	Absorption & Emission	
Shell	GaP, InGaP, or ZnSe	Protection & Ideally Absorption	
Passivation	ZnS	Air Stability & Reliability	
Barrier Metal Oxides		Reliability	

Baseline Proof-of-Principle for QD HCL Device: A Cadmium-Lite Half-Step

Baseline Proof-of-Principle for QD HCL Device: A Cadmium-Lite Half-Step

	Baseline Cd- containing Device	M4.3.1 Targets
Lumens	21.78	-
lm/W	123.5	160
LER	301	-
ССТ	4030	4000
CRI	92	> 90
MDER	0.76	> 0.7

Key Learnings:

- Efficacy, MDER, and R9(!) unusually dependent fine details of blue line-shape and QY
- Surprisingly, extensive work has shown there is no value to switching from a 450 LED to a shorter-wavelength source (green phosphors)

Go/No-Go Milestone: A Fully Cd-Free Cyan-Enhanced Device

Key Learnings:

- LED light passes through cyan dots on the way to other phosphors/dots so PLQY retention during silicone polymerization is critical!
- While not quite meeting the milestone, these results are arguably better than the commercial offering at 157 lm/W at CRI 80

	Baseline Cd- containing Device	Cd-free HCL Device	M4.3.1 Targets	% Increase over baseline device
Lumens	21.78	24.33	-	11.7%
lm/W	123.5	138.5	160	12.1%
LER	301	332	-	10.3%
ССТ	4030	4261	4000	-
CRI	92	91	> 90	-
MDER	0.76	0.71	> 0.7	-

Cd-based QDs Cd-free QDs

Optimizing Towards More Resilient Materials

Workflow for chemical and photoinduced quenching of QD emission has been developed

- Tests are designed to interrogate the quenching mechanism for GaP and ZnSe shells
- QD emission is greatly quenched by low flux blue light and methyl viologen
- These data may aid in selection of promising inner shell composition and guide the synthesis of stable particles
- HT Robotic data focuses on optimizing leads

ZnSe is an Important Inner Shell but GaP Offers Advantages

CdS shell layer provides absorptivity at 450nm (95:5 S:Se shown above).

Shell thickness increases chemical robustness, reduces Auger recombination, and lengthens luminescence lifetime.

Poor absorptivity and reabsorption of red and of green is a major drawback.

GaP layers would increase absorption at 450 nm, and better passivate InP layer.

Fundamentally new synthetic methods to grade InP/GaP interfaces are needed.

GaP Strategies

Ga(oleate)₃ from Ga(acac)₃ and

Pietra et al. Chem. Mater, 2017, 29, 5192.

Difficulty reproducing this promising literature approach. Still a contender for simultaneous formation of InGaP and InGaP/GaP

TMS-P +TMS-P, Vac, 120 °C Ga(oleate)₃ ACC04191 60 min InP/GaP ODE Red InP 60 min RT->290 C 4.5 📥 MLK01087 InP/GaP OD450/ODpeak ratio 4.0 3.5 3.0 2.5 2.0 20 40 60 80 Reaction Time (min)

Approach fully developed in-house shows promise in increasing blue absorption, but lacks adequate analytics First unequivocal example of GaP shells. Elemental analysis and TEM confirm 4 monolayers

InGaP + 10 Gal₃ + 5 Znl₂ + 9.1 (CH₃Si)₃P

300 °C InGaP/GaP QDs TOP 1.4 1.2 Increased reaction time 1.0 Absorbance 0.8 0.6 0.4 0.2 0.0 - ________ 400 500 600 700 Wavelength (nm)

Results from GaP-containing Core-Shell Structures

Sample	Core Diameter (nm)	GaP Thickness (nm)	ML GaP	InP/GaP Diameter (nm)	Total Diameter (nm)
InP	3.2	-	-	-	-
InP/GaP/ZnS	3.2	1.1	4.1	5.4	5.6
InP/GaP	3.2	1.9	6.8	6.9	-
InP/GaP/ZnS	3.2	1.8	6.6	6.8	7.4

InGaP + 10 Gal₃ + 5 Znl₂ + 9.1 (CH₃Si)₃P

Results from GaP-containing Core-Shell Structures

Sample	Core Diameter	GaP Thickness (nm)	ML GaP	InP/GaP Diameter (nm)	Total Diameter (nm)	
InP	3.2	-	-	-	-	Quantum yields range from 0 – 5% !!
InP/GaP/ZnS	3.2	1.1	4.1	5.4	5.6	
InP/GaP	3.2	1.9	6.8	6.9	-	1.4
InP/GaP/ZnS	3.2	1.8	6.6	6.8	7.4	1.2 – Increased reaction time
InGaP ⊣	⊦ 10 Gal ₃	+ 5 Znl ₂ + 9 <u>300 °C</u> TOP	every 1.0 - 1.0 - 1.0 - 0.8 - 0.8 - 0.6 - 0.6 - 0.4 - 0.2 - 0.0 -			

Crystalline GaP (!) from nano-Gallium Droplets (!!!)

Crystallization through a liquid metal intermediate circumvents the formation of amorphous materials commonly produced in molecular syntheses of III-V semiconductors.

Facilitates nucleation and growth

Lowers energy barrier to nucleation and growth of covalent materials by solvating precursors in a highly polarizable medium and then directing layer-by-layer crystallization.

Achieves microscopic reversibility

Highly polarizable liquid metal interfaces facilitates rapid bond breaking and making in covalent systems.

Growth of GaP Occurs Layer-by-Layer

single-crystalline or have some planar twin defects.

Injection of Primary Amine Halts Gallium Growth

Injection of primary amine sequesters unreacted gallium by the formation of unreactive aminogallanes!

The addition of primary amine dictates nanocrystal shape

Phosphidation only occurs with available gallium metal resulting in teardrop-shaped nanocrystals rather than wires, which are commonly formed during SLS growth.

The addition of primary amine dictates nanocrystal size

The width of GaP is consistent with the radius of metallic gallium at the time of injection.

Spherical Nanocrystals Formed with Stronger Oxidant PCI₃

- Phosphidation is complete just 30 seconds after PCl₃ injection (compared to roughly 1 hr for P(NMe₂)₃.
 - Color change from black to yellow/orange observed. Particles are crystalline by TEM.
- Particles are round rather than teardrop shaped.
- Resulting GaP much smaller than anticipated Ga size (35 nm).
 - Possible etching from PCl₃?
- Increased aggregation due to lack of surface ligands.

Taking the Technology to the Next Step: In/Ga Alloyed Seeds

 M^0

Inspiration from: He et al. Chem. Mater. 2015, 27, 2, 635-647

Synthesis: 1:1 GaCl₃/Inl₃

Gallium metal has a lower redox potential than indium, which results in a gallium-rich oxide shell when exposed to air.

Oxygen is Still a Big Problem Even with Optimized Materials

- Rapid degradation in air shows that oxygen quenches QDs
- Further passivation is required both at the core-shell and encapsulant stages
- Initial device PLQY for non-cadmium dots has increased from ~3% with outside materials to >50% with new in-house dots
- This high PLQY must be maintained over the operating lifetime of the devices
- Encapsulation with metal oxides is critical for QD survival on-chip

Before and after testing

Future Directions:

Metal phosphate shelling

Metal phosphates must be identified the improve PLQY and allow silicone encapsulation. The metal phosphate could prove sufficient (especially those with M²⁺ and M³⁺ ions), or may act as a buffer layer prior to silicone encapsulation.

Layer-by-layer and syringe pump methods are targeted.

Basic science of metal and phosphate adsorption on QDs to identify isoelectric points and PLQY dependence on adsorption isotherms.

Future Directions:

InGaP/ZnS

III-V quantum dots encapsulated in thick silica-aluminate encapsulant

20 m

InGaP/ZnS+oxide

Transfer from non-polar to polar solvent as quantum dots become coated with poly-phosphate

Year 1 Progress towards Milestones

Milestone	SOPO Task/ Subtask Number	Planned Completion Date	Verification Method	% Completion	Comments
CdZnSeS/ZnS (cyan)	Task 1/ Subtask 1.1	3/31/2022	1 g, 475 ± 15 nm, FWHM < 35 nm emitter, PLQY > 90%	90	Did not make 1 g per batch, PLQY ~75%
Determine proper LED light source	Task 4/ Subtask 4.1	3/31/2022	Demonstrate cyan-enhanced white light LED with CdZnSeS/ZnS QD and establish baseline HCL values	100	123 lm/W
Determine optimal LED pump wavelength	Task 4/ Subtask 4.1	6/30/2022	Consider cost and long-term potential of LED source verses efficacy and color quality of white solution	100	450 nm
InGaP/GaP/Zn(Se)S/ZnS (cyan)	Task 1/ Subtask 1.2	9/30/2022	0.1 g, 475 ± 15 nm, FWHM < 40 nm, PLQY > 85%	90	PLQY ~60%
InGaP/GaP/Zn(Se)S/ZnS (red)	Task 1/ Subtask 1.3	12/31/2022	1 g, 625 ± 10 nm, FWHM < 40 nm emitter, PLQY > 85%	80	FWHM ~50 nm, PLQY ~80%
Facet Control During InGaP/(ZnSe)ZnS core-shell Synthesis	Task 2/ Subtask 2.1	12/31/2022	Successful initial HERMAN screening run w/ Zn salts	80	Facet control should use HERMAN
Demonstrate and quantify PLQY stability InGaP/GaP/ZnS QDs	Task 2/ Subtask 2.3	12/31/2022	Solution/shelf stability- PLQY retention as a function of challenge condition, eg. pH	100	Developed chemical and flux challenges
Tune QD size, composition for high absorption	Task 4/ Subtask 4.1	12/31/2022	(ODoptimal / ODpeak) > 4	25	Low GaP work; no increase in Abs
Demonstrate cyan-enhanced capability of Cd-free QDs	Task 4/ Subtask 4.3	12/31/2022	CRI Ra = 90, CCT = 4000, MDER (D65) > 0.7	100	Achieved HCL device
Demonstrate cyan-enhanced capability of Cd-free QDs	Go/No-Go	12/31/2022	CRI Ra = 90, CCT = 4000, MDER (D65) > 0.7, 160 Im/W, solution PLQY > 60% for cyan and red QDs	90	139 lm/W

Year 2 Upcoming Milestones

MILESTONE SUMMARY FOR BUDGET PERIOD 2							
Milestone Number	Milestone	SOPO Task/ Subtask Number	Planned Completion Date	Verification Method			
M3.1.1	Optimize chemical bath deposition of hydroxyapatite onto InGaP/ZnS QDs to establish baseline PLQY. Grow >5 nm of hydroxyapatite onto QDs	Task 3/ Subtask 3.1	3/31/23	Standardized optical testing protocol. X-ray diffraction. TEM.			
M3.3.1	Novel barrier coated Cd-Free QD system with a PLQY > 50 % Measured in film at 10 W/cm ² , 120 °C	Task 3/ Subtask 3.3	6/30/23	Standardized optical testing protocol.			
M4.2.1	Barrier-coated QD Stability Studies: PLQY Maintenance > 50% of baseline at 500 hrs LED HTOL & WHTOL Reliability	Task 4/ Subtask 4.2	6/30/23	Real time monitoring of changes in efficacy and color metrics in test LED devices under industry-standardized conditions			
DP1	Report best surface chemistry for novel barrier coating	-	6/30/23	Comparison of optical brightness and reliability for candidate processes			
DP2	Opt to pursue porous glass encapsulation based on PLQY and reliability data	-	6/30/23	Comparison of optical brightness and reliability for candidate processes			
M3.2.1	Demonstrate next gen capabilities of metal-oxide encapsulation of QDs HTOL and WHTOL 1000-hour reliability challenges by 50% over manufacturing baseline methods.	Task 3/ Subtask 3.2	9/30/23	Real time monitoring of changes in efficacy and color metrics in test LED devices under industry-standardized conditions			
M3.3.2	Novel barrier coated Cd-Free QD system with a PLQY > 90% Measured in film at 10 W/cm ² , 120 °C	Task 3/ Subtask 3.3	9/30/23	Standardized optical testing protocol.			
M4.2.2	Barrier-coated QD Stability Studies: PLQY Maintenance > 100% of baseline at 1000 hrs LED HTOL & WHTOL Reliability	Task 4/ Subtask 4.2	12/31/23	Real time monitoring of changes in efficacy and color metrics in test LED devices under industry-standardized conditions			
M4.3.2	Demonstrate full spectrum capability by building LEDs with Cd-free of PLQY > 90% for red and cyan QDs	Task 4/ Subtask 4.3	12/31/23	CRI Ra = 95, CCT = 4000, MDER (D65) > 0.7			
M4.3.3	Demonstrate CRI 90, 4000K device with red, Cd-free QDs	Task 4/ Subtask 4.3	12/31/23	CRI Ra = 90, CCT = 4000, MDER (D65) > 0.7, 210 lm/W			

Acknowledgements

OSRAM Opto Semiconductors

Dr. Melody Kessler Dr. Dmitry Porotnikov James Wyckoff Aidan Coryell

Additionally: Brian Theobald, Dr. Ben Mangum, Anne Ramey, Dr. Erik Johansson

Columbia University William Zhang, Bereket Zekarias, Dr. Jessica Geisenhoff, Dr. Rodolphe Valleix

Molecular Foundry of LBNL

Dr. Emory Chan, Dr. Mina Kim, Dr. Sandra Atehortua Bueno

OSRAM Opto Semiconductors

