Hybrid Manufacturing for High Performance **Air-to-Refrigerant Heat Exchangers** Year 2 **Final Year**

DE-EE0009677

National Laboratory

Project Summary

Objective and outcome

- Develop adhesive-based hybrid manufacturing method for air-to-refrigerant HXs which is >50% cheaper & >36% less energy in manufacturing
- Develop novel air-to-refrigerant variable geometry HXs with higher compactness, improved frosting / maldistribution resilience, & less refrigerant
- Framework validation through laboratory-scale & field-scale experimental testing

Team and Partners

<u>Stats</u>

Performance Period: Oct. 2021 – Sept. 2024 DOE budget: \$1400K, Cost Share: \$350K Milestone 1: 1st adhesive; HX design framework + proof-of-concept prototypes Milestone 2: 2nd adhesive; Lab-scale HXs + testing Milestone 3: Final adhesive; Field-scale HXs + testing

Problem

- Heat eXchangers (HX) are key components in HVAC&R systems
 - Hold refrigerant charge; impact system efficiency
- Improved HXs can lead to
 - Less refrigerant charge
 - Less material use, size/weight reduction
 - Lower energy consumption, emissions, & costs
- Challenges in bringing new HX technology to market
 - Novel designs must be at least 20% better
 - Lack of basic heat transfer & flow fundamentals, correlations
 - Component availability
 - Joining/manufacturing techniques
 - Flow maldistribution
 - Frost accumulation

Alignment

- Develop an adhesive based hybrid manufacturing method for air-torefrigerant HXs
 - ≥50% cheaper
 - $\geq 36\%$ less energy in manufacturing
 - More reliable than existing solder-based methods
- Develop novel air-to-refrigerant variable geometry heat exchangers (VGHX)
 - Contain less refrigerant
 - Are more compact
 - Are more resilient to frost growth & refrigerant maldistribution
- Conduct frost accumulation & reliability tests
 - Reduce refrigerant maldistribution from frost growth
- Delivery of HX prototypes to industrial partners for independent performance testing

Impact & Target Market

- Impact
 - New manufacturing method expected to be 50% cheaper & consume 36% less energy than existing solder-based methods
 - Adhesive-based approach has potential to reduce production barriers for next generation HXs
 - Improved reliability over solder-based methods to reduce refrigerant leakage (1.5-2.0% of total emissions)
 - Novel HX designs with improved resilience to field challenges
 - $\geq 10\%$ longer operation time under frost accumulation conditions
 - ≥20% improvement in uniformity of evaporator mass flow rate
 - HX design framework and technical guidelines for adhesive-based hybrid manufacturing thereof
 - Modular technology with multiple product levels, e.g., fully variable geometry HXs (premium) vs. small-diameter round tubes with rectangular headers (affordable)
 - Industry involvement in HX design development & testing with immediate and iterative feedback on commercial viability and tech-to-market
- Target Market
 - Residential and commercial air conditioners and heat pumps
 - New construction and retrofit applications

Approach: HX Manufacturing – State-of-the-Art

- Cast based method
 - High energy consumption to cast metals
 - Requires corrosive fluxes to clean metals
 - Costly EDM cutting of tube ends
 - Requires tanks and gasket seals

Approach: State-of-the-Art Commercial Adhesives

	Commercial adhesives	Tested substrate	Temperature (°C)	Lap shear strength (MPa)
	3M DP 810 (Acrylate)	Aluminum	90	3.47
	J-B Weld Extreme Heat (Epoxy)	Aluminum	90	1.78
	J-B Weld Hi-temp RTV (Silicone)	Aluminum	90	0.34
Lap Shear Test	DP 810 CF	Extreme Heat	Red Silic	one CF

Cohesive Failure (CF): Failure occurs within adhesive which indicates weak adhesion

Approach: Initial Fabrication

- Commercially available adhesives
 - Previous work evaluated 23 options
 - Most had tube-adhesive leaks
 - Acrylic-Based DP810 \rightarrow most promising
 - Withstood 2.8 MPa at room temperature (Max temperature 50°C)
 - Medium viscosity \rightarrow hard penetration
- Epoxy-based adhesives
 - Excellent lap shear
 - Low viscosity \rightarrow easy penetration
 - High-temp capable (>90°C)

Approach: Design of High Temperature Adhesives

Adhesives	Lap Shear Adhesion (MPa) at 65°C	Lap Shear Adhesion (MPa) at 90°C	Failure Mode					
ORNL-A	7	8.5	Adhesive failure					
ORNL-B	7.2	7.6	Adhesive failure					
ORNL-C	12.8	12.5	Adhesive failure					
ORNL-D	N/A	10.13	Adhesive failure					
ORNL-E	N/A	9.02	Adhesive failure					

Approach: Design & Optimization Framework

PPCFD = Parallel Parameterized Computational Fluid Dynamics | MOGA = Multi-Objective Genetic Algorithm

Progress: Adhesive Temperature Stability & Solvent Resistance

Excellent solvent resistance

Progress: Current Adhesive Development

Progress: Tube-Adhesive Pressure Testing

- DP8407NS held 3 MPa at 60°C for 30+ minutes (M2.4)
- ORNL-A epoxy held 3.4 MPa at 90°C for 30+ minutes (M3.2) in a 3/8" OD tube
- Narrow bonding area improves adhesion performance

Aluminum Alloy Testing

ORNL-A Test

DP8407NS Test

Progress: Heat Exchanger Fabrication

- Initial Approach
 - All adhesive header
- Manifold Method
 - Reduced cost and adhesive consumption
 - Poor adhesive penetration \rightarrow leakage
- Block Header Design
 - 1.5 mm groove for adhesive application

Progress: Frost Accumulation Modeling

- Multiphysics frost accumulation simulations validated with literature data
- Model development challenges
 - Fin conduction (ice accretion model cannot simulate fin conduction)
 - Ice/frost thermophysical properties cause solver stability issues

Future Work

- Design and Analysis
 - Finalize frost accumulation analysis
 - Increase scope of packaging considerations in flow prediction
 - VGHX design with improved frost resilience (>10% operational time)
- Fabrication
 - Testing and evaluation of block header design
 - Develop additional manufacturing methods
 - HX prototyping (~3 kW lab-scale & ~5-10 kW field-scale)
- Testing
 - Continued adhesive testing with tube-pressure test rig
 - Proof-of-concept HX testing & validation
 - Lab-scale: in-house & industry partners
 - Field-scale: industry partners

Thank You

Performing Organizations: University of Maryland, Heat Transfer Technologies, LLC., Oak Ridge National Laboratory Prof. Reinhard Radermacher, <u>Dr. Vikrant Aute</u> vikrant@umd.edu DE-EE0009677

REFERENCE SLIDES

Project Execution

	Project Schedule																										
				BP1						BP2										BP3							
Tasks		Q1 Q2			2 Q3 Q4				4	Q1			Q2			Q3 Q4			G	Q1 (Q2		Q3		Q4	
		2 3	3 4	5	6 7	8	9 1	0 11	12	1 2	3	4	5 6	7	8 9	9 1	10 11	12	1 3	2 3	4	5 6	7	8 9	10	11 12	
Task 0: Develop PMP plan																											
Milestone 0.1: PMP / IPMP		<	\rangle																								
Task 1: Development of Leak Tight Proof-of-Concept Heat Exchanger(s)																											
Milestone 1.1: Comprehensive literature review of the subject matter		<	>																								
Milestone 1.2: Determine Most Promising Applications for Variable-Geometry Heat Exchangers		\langle	>																				100			8 8 8	
Milestone 1.3: Develop first-cut adhesive material					\diamond				1											3							
Milestone 1.4: Desgin and fabricate proof-of-concept heat exchangers					16				\diamond											-							
Milestone 1.5: Improve the in-house air-to-refrigerant heat exchanger design and optimization framework							\Diamond																				
Go/No-Go 1									\bigcirc																		
Task 2: Fabrication and Testing of Extended Operation Designs																											
Milestone 2.1: Evaluate the results of the adhesive based hybrid method											\Diamond																
Milestone 2.2: Further Adhesive Development													\Diamond	>													
Milestone 2.3: Design extended operation time heat exchanger(s)											\Diamond																
Milestone 2.4: Fabricate heat exchangers from milestone 2.1)]					1				<	\diamond				3							
Milestone 2.5: Conduct performance measurements and validate the framework									5 25									\Diamond									
Milestone 2.6: Conduct model validations and calibration																		\Diamond									
Milestone 2.7: Conduct field validation of heat exchangers																		\Diamond									
Go/No-Go 2																			\bigcirc								
Task 3: Evaluation, Scale-Up, and Validation of Hybrid Manufacutirng Method																											
Milestone 3.1: Evaluate and review progress																					>						
Milestone 3.2: Design a ~5-10 kW heat exchanger																						0	>				
Milestone 3.3: Finalize adhesive development																						0	>				
Milestone 3.4: Complete independent performance tests																1										\diamond	
Milestone 3.5: Final report submitted to DOE																										\diamond	

♦ Milestone OGo/No-Go

Team

- University of Maryland (Prime recipient)
 - Component modeling/design, data analysis, project management
- Heat Transfer Technologies, LLC (Sub-recipient)
 - Heat exchanger design, assembly, technical advisor
- Oak Ridge National Laboratory (Sub-recipient)
 - Adhesive development, laboratory testing, technical advisor
- Industry Partners
 - 3M
 - Carrier
 - Goodman / Daikin Comfort Technologies
 - Honeywell
 - Small Tube Products