

DOE Bioenergy Technologies Office (BETO) 2023 Project Peer Review

Renewable Natural Gas from Carbonaceous Wastes via Phase Transition CO₂/O₂ Sorbent Enhanced Chemical Looping Gasification

Date: April 6th, 2023 Organic Waste Conversion

Principal Investigator: Fanxing Li
Organization: North Carolina State University

Project Overview

Biomass derived syngas (CO + H_2) can be used for the sustainable production of renewable natural gas, hydrogen, and beyond.

Project Goals: (i) developing multi-functional, mixed oxide based phase transition sorbents (PTS) for biomass gasification with integrated air separation and CO₂ sorption; (ii) demonstrating the ash and contaminant resistances, stability, activity, and cost/performance of the PTS; (iii) 5 kW_{th} circulating fluidized bed (CFB) gasifier demonstration; (iv) validate >35% decrease in LCOE and >10 energy return on investment (EROI).

1 – Approach: Concept Overview Sorption Enhanced Chemical Looping Gasification (SE-CLG)

Gasifier: $C_nH_mO_x + SrFeO_3 \rightarrow SrCO_3 + FeO/Fe + CO$

 $+ 3H_2$ ($\Delta H = -14 \text{ kJ/mol } H_2$)

Regenerator: $SrCO_3 + Fe/FeO + Air \rightarrow SrFeO_3 + CO_2 + N_2$ ($\Delta H = -150 \text{ kJ/mol SrFeO}_3$)

Process intensification enabled by a new class of multi-functional mixed oxide sorbents with for redox-triggered CO₂-sorption and desorption.

Advantages vs SoTA:

- *In-situ* CO₂ capture and integrated oxygen separation for significantly higher efficiency;
- Elimination of water-gas-shift and CO₂ removal;
- Hydrogen rich syngas ready for methanation;
- Catalytic activity for tar removal;
- Tunable sorbent thermodynamics.

1 – Approach

Overall Gibbs free change of absorption step (a) SC, (b) SB PTS as a function of pO_2 , p_{CO_2} and $\Delta G1^0$ at T=750 and P=1 atm Overall Gibbs free change of regeneration step (c) SC, (d) SB PTS as a function of pO_2 , p_{CO_2} and $\Delta G1^0$ at T=750 and P=1 atm

1 – Approach

- Key success factors: i. Phase transition sorbents (PTSs) performance, i.e. sorption capacity and kinetics, redox activity and oxygen carrying capacity, activity for biomass (tar) conversion, and long-term stability; ii. Reactor design: satisfactory solids circulation rates and sorbent residence times;
- Overall approach: (a) biomass waste sample collection, characterization and pretreatment; (b) Design, characterization and optimization of PTSs; (c) preliminary process and cost analysis; (d) cold model design/operation and hot unit design; (e) hot unit construction; (f) scale up synthesis of PTS particles; (g) system demonstration; (h) comprehensive TEA/LCA;
- **Potential risks and mitigation:** i. PTS performance (Phase I work resulted in high performance sorbents); ii. Reactor performance (Phase I cold model operation met the design requirements); iii. Reactor cost inflation (the team is working closely with the vendor for cost reduction). The team has ample technical expertise and promising data. The tasks were specifically designed to de-risk these challenges;
- Go/No-Go: Finalized gasifier hot model design with detailed P&ID, HAZOP analysis, and cost estimate.
- **Team:** PI Fanxing Li, expert in mixed oxides, chemical looping and reaction engineering; Co-PI and key personnels: Stephen Kelley (NCSU), Sunkyu Park (NCSU), and Lijun Wang (NC A&T), experts in biomass characterization, conversion and pretreatment; Yuan Yao (Yale), expert in TEA and LCA; Wyatt Casey LaMarche and Raymond Cocco(PSRI), particle technology and reactor design. A diverse team involving public and private educational institutions, HBCU, and an industrial collaborator).

1 – Approach

2 – Progress and Outcomes

Budget Period 1 (Q1-Q7; currently ongoing): (i) biomass waste feedstocks collection, characterization, and pretreatment; (ii) phase transition sorbents (PTSs) design, characterization, and optimization; (iii) preliminary process and cost analysis; (iv) PTS performance evaluation and improvements; (v) design of a 5 kW_{th} SE-CLG gasifier.

(Go/No-Go) Hot model design: Finalized gasifier hot model design with detailed P&ID, HAZOP analysis, and cost estimate, ready to proceed.

Budget Period 2 (Q8-Q13): (i) construction of gasifier hot unit; (ii) scale up synthesis of PTS particles; (iii) gasifier hot unit demonstration and methanation; (iv) comprehensive process and life cycle analyses.

(End of project targets) >25% decrease in LCOE compared to indirect steam gasification technology and >5 EROI (our internal targets for the project are 35% decrease in LCOE and >10 EROI).

2 – Progress and Outcomes

Milestone	Туре	Description
1.1: Sample collection and characterization (Task 1.1.1 and 1.1.2)	Technical	(Q1) Collect consistent and representative biomass waste feedstocks and characterize their key properties for thermochemical conversion.
1.2: Feedstock pretreatment (Task 1.1.3)	Technical	(Q3) Determine the effect of torrefaction on the feedstock
1.3: CO ₂ sorption of sorbent (Task 1.2.1 and 1.2.2)	Technical	(Q3) Develop six PTSs with >5 w.t.% oxygen capacity and CO ₂ uptake/release kinetics two times greater than a baseline CaO sorbent while maintaining high stability (<3% degradation of CO ₂ uptake/release kinetics) over 25 CO ₂ capture and release cycles.
1.4: Sorbent development (Task 1.2.3)	Technical	(Q3/4) Develop six PTSs showing >95% methane and biomass volatile conversion while producing syngas with H ₂ /CO ratio >2.5
1.5: Sorbent robustness (Task 1.2.4)	Technical	(Q4) Develop four PTSs showing < 5% degradation over 50 cycles in the presence of ash and contaminants
1.6: Cost benefit for SE-CLG (Task 1.3.1 and 1.3.2)	Technical	(Q4) Validate 35% reduction in Levelized Cost of Energy (LCOE) for methane production compared to state-of-the-art
1.7: Fluid bed performance (Task 1.4.1 and 1.4.2)	Technical	(Q7) Develop four PTSs showing >95% biomass waste conversion on a carbon basis
1.8: Sorbent fluidized bed stability (Task 1.4.3)	Technical	(Q7) Develop one PTS with < 5% degradation in activity and <1 wt.% attrition over a 24 hour testing period
1.9: Cold model design (Task 1.5.1)	Technical	(Q6) Complete the design of a CFB gasifier cold model
1.10: CFB cold model operations (Task 1.5.1)	Technical	(Q6) 24 hour stable and continuous operation of the CFB cold model
1.11: Hot model design (Task 1.5.2)	Go/No Go	(Q7) Finalized gasifier hot model design with detailed P&ID, HAZOP analysis, and cost estimate, ready to proceed.

Achieved Milestones

On-schedule, nearly completed

2 – Progress and Outcomes: Biomass Waste Collection and Pretreatment

		2	Pine (0.0 >.425 mm	Din	9200 20 5	425 mm				
				300.40 >.425 mm	 Pine 200.20 > .425 mm Creosote 0.0 > .425 mm 						
		1.8		ote 200.20 >.425 mm • Creosote 300.40 >.425 mm							
		1.6		C 0.0 >.425 mm	▲ Cuaz-C 200.20 >.425 mm						
		1.0		C 300.40 >.425 m		mePro 0.0	> .425 mm				
		1.4	Flame	Pro 200.20 > .42	5 mm -+-An	thracite					
		9									
		° 1.2					×				
		at				2					
0).6	Atomic H:C Ratio x 10 8.0 8.0 9.0				•	* -	_			
		Ξ									
		8.0 ਤੋਂ									
0).5	ţ			_						
	,,,	△ 0.6		× ,•							
				^ *							
_	١	0.4									
U).4										
		0.2									
		0									
% 0).3		0	0.2	0.4	0.6	0.8	1			
			U	0.2			0.8	1			
					Atomic O:0						
0).2										_
_											
0).1									_	
U). <u>T</u>										
				_							
	_		_								
	0										
			Si	Р	S	Cl	K	Ca	Mn	Fe	Cu
			JI	Г	3	CI	IX.	Cd	IVIII	re	Cu
				■ No Torr	afaction	= 200	0C 20 min	■ 300	C 10 min		
				■ No Torre	efaction	200	OC 20 min	■ 300	C 40 min		

	C%	Н%	N%	0%	Ash%
Pine 0.0 >.425 mm	50.04	6.16	0.14	43.66	0.96
Pine 200.20 >.425 mm	54.26	5.86	0.00	39.88	0.77
Pine 300.40 >.425 mm	75.60	4.08	0.17	20.15	2.37
Creosote 0.0 >.425 mm	49.62	5.69	0.13	44.56	1.86
Creosote 200.20 > .425 mm	54.50	5.71	0.07	39.72	0.96
Creosote 300.40 > .425 mm	72.61	4.01	0.31	23.07	1.24
CuAz-C 0.0 >.425 mm	50.91	5.91	0.06	43.12	1.091
Cuaz-C 200.20 > .425 mm	51.04	5.47	0.02	43.47	1.56
CuAz-C 300.40 >.425 mm	73.94	3.83	0.10	22.13	3.49
FlamePro 0.0 > .425 mm	46.86	6.00	0.58	46.56	4.56
FlamePro 200.20 > .425 mm	64.42	4.90	0.95	29.73	3.79
FlamePro 300.40 > .425 mm	48.10	3.16	0.45	48.29	4.89

2 - Progress and Outcomes: PTS Bi-Functionality and Tunability

Isothermal TGA experiments confirmed the feasibility of the proposed concept, and correlation between reduction degree and CO₂ sorption.

2 – Progress and Outcomes: Computationally Guided PTS Design

Sorption capacity

- Based on DFT computation, 91 samples were tested
- Isothermal operation at 850 °C
- DFT predicted samples show a better performance
- Doping in the B-site of SrFeO₃ is necessary to achieve isothermal operation

2 – Progress and Outcomes: Computationally Guided PTS Design

- > Demonstration of a SCFM sorbent in a packed bed
 - Successful isothermal operation:

2 – Progress and Outcomes: PTS Conversion of Tar/Model Compounds

	_	
Material	H ₂ :CO _x	Molar [CO ₂]
SCFN-3791	2.63	13.0%
SCFN-4691	4.07	9.1%
SCFN-5591	3.53	9.3%
SCFN-6491	2.27	15.0%
SCFN-7391	2.38	14.9%

2 – Progress and Outcomes: PTS Conversion of Tar/Model Compounds

With the Ni catalyst, sorption capacity greatly increased (38%), with a toluene conversion ~98% with H₂:CO_x at 3 or higher for all cycles, ideal for methanation.

2 - Progress and Outcomes: PTS Stability in the Presence of Ash

> 850 °C isothermal operation

1 wt.% Ash in sorbent: 29% CO₂ capacity vs. pure sorbent: 29.9%

25 wt.% Ash in sorbent: slight deactivation followed by stabilization

Ash would have a negligible impact on the sorbents in the gasifier since ash is estimated to be ~0.03 wt.% (the current test was 30 – 600 X of the anticipated amount).

2 – Progress and Outcomes: PTS Conversion in a Lab-Scale Fluidized Bed

- Fluidized bed reactor with 15g sorbent particles (180~425 μm)
- Woody biomass (200~500 μm)
- Biomass injection: pressurized pneumatic transport in a batch mode
- Total fluidizing gas volume: 1.2 SLM; fluidizing velocity: 0.18 m/s

Pulse injection

Key findings:

- ~100% carbon balance and carbon conversion;
- H₂ concentration reached 80%, minimal tar production;
 - Variable H₂: CO_x ratios, higher CO_x for more oxidized sorbent under the batch mode of operation;

Continuous CFB operation would allow controlled yet tunable oxidation and carbonate states to allow ideal H_2 : CO_x ratios for methanation;

Excellent sorbent renderability and stability over 40 hours of fluidized bed operation.

2 – Progress and Outcomes: PTS Characterizations

- In-Situ XRD results from the advanced light source (ALS) at LBNL reveal fastforming intermediates linked to the performance of the PTS materials.
- Rietveld refinement is being used to identify which phases impede further CO₂ capture.
- Results of this detailed characterization will be coupled with in-situ TEM and DFT to assist future optimizations.

2 - Progress and Outcomes: (Cold) Reactor Design and Operation

Dual-fluidized bed gasifier

2 – Progress and Outcomes: (Cold) Reactor Design and Operation

- Solid circulation rate linearly increased with the aeration rate in the L-valve
- Ability to achieve desired solids circulation rates
- Strong anti-interference ability: remained almost unchanged with the variation in the gas velocities in the regenerator, gasifier and riser
- 400 450 s sorbent residence time and 60 – 80 s biomass residence time in the gasifier, suitable based on sorbent kinetics

2 – Progress and Outcomes: Preliminary Process Analysis

Plant Scale: 2000 MT/d Biomass Feed	Basecase	SE-CLE	
Minimum Fuel Selling Price (\$/MM BTU)	8.58	6.05	
Fuel Production (MM BTU/hr)	459.27	622.07	
Capital Cost \$			
Feedstock Handling	\$8,801,293	\$8,801,293	
Gasification and gas conditioning	\$31,850,393	\$18,770,129	
Compression	\$7,937,094	\$9,748,066	
Methanation	\$12,407,887	\$15,389,026	
Steam System and Power Generation	\$7,718,126	\$7,718,126	
Others	\$910,571	\$910,571	
Total Installed Equipment Cost	\$69,625,364	\$61,337,211	
Added Direct + Indirect Cost	\$64,574,636	\$56,462,789	
Total Capital Investment (TCI)	\$134,200,000	\$117,800,000	
Manufacturing Cost \$/yr			
Biomass	\$10,512,500	\$10,512,500	
Catalyst	\$4,285,125	\$4,070,869	
Other Materials	\$2,516,928	\$2,516,928	
Electricity	\$1,335,162	\$1,272,013	
Waste Disposal	\$1,830,676	\$1,830,676	
Fixed Costs	\$5,200,000	\$ 4,700,000	
Total Operating Cost	\$25,700,000	\$24,900,000	

3 – Impact

- The proposed SE-CLG approach can greatly intensify the biomass gasification process since it combines syngas conditioning, oxygen separation, and catalytic tar removal in a single step, leading to an efficient, autothermal gasification process.
- Studies to date confirmed the feasibility and superior performance of the proposed sorbent.
 Excellent sorbent stability, CO₂ and oxygen capacities, and biomass ash resistance were demonstrated.
- >3:1 H_2 :CO_x ratio was achieved, ideal for methanation;
- A novel dual fluidized bed gasifier cold model was designed and demonstrated.
- One peer-reviewed article has been published in ACS Sustainable Chemistry and Engineering.
 One more under review, and two other are being finalized for submission.
- Outreach to potential industrial partners have generated substantial interests.
- The team has previously filed invention disclosures covering relevant mixed oxide compositions. A patent application is being prepared.

Summary

- Feasibility of the SE-CLG concept was validated;
- Advanced phase transition sorbents (PTSs) were developed with multi-functionalities and capable of isothermal CO₂ sorption and regeneration;
- The PTSs showed excellent cyclic stability and capable of converting various biomass/biomass derived feedstocks into high quality syngas with >3 H₂:CO ratios, ready for methanation;
- Reactor design and cold model operation were successful, meeting the SE-CLG requirements;
- The team is ready to move to BPII after selecting the vendor for the hot unit.

Quad Chart Overview

Timeline

- 08/01/2021
- 11/30/2024

	FY22 Costed	Total Award		
	Cooled			
DOE Funding	\$383,861	\$2,499,411		
Project Cost Share *	\$278,937	\$636,099		

TRL at Project Start: TRL-3 TRL at Project End: TRL-5

Project Goal

Develop a significantly intensified, sorbent enhanced – chemical looping gasification (SE-CLG) technology, which combines biomass gasification, air separation, and syngas conditioning and cleaning into a single circulating fluidized bed (CFB) gasifier to produce methanation ready syngas with an ideal H₂/CO ratio (~3:1) from biomass waste such as C&D waste and chicken litter.

End of Project Milestone

Design and demonstrate a 5 kW_{th} CFB based SE-CLG gasifier for 100 h continuous operation, as well as methanation of the syngas product for pipeline quality renewable natural gas (RNG) production.

>35% decrease in levelized cost of energy (LCOE) compared to the baseline indirect steam gasification technology.

>10 energy return on investment (EROI).

Funding Mechanism

DE-FOA-0002044, AOI 1b, 2019.

Project Partners

- NC A&T State University
- Yale University

Additional Slides

- Fluidized bed reactor with 15g sorbent (180~425 μm)
- Woody chips (200~500 μm)
- Biomass injection: pressurized pneumatic transport
- Total fluidizing gas volume: 1.2 SLM; fluidizing velocity: 0.18 m/s

- Reforming: Steam flow rate: 0.21 ml/min, Ar: 923 SCCM;
- Regeneration: Steam flow rate: 0.21 ml/min; Ar: 683 SCCM; O₂: 240 SCCM
- Woody biomass injection: 0.3 g each time, multiple injections each half cycle
- H₂ and syngas concentration increased with injection numbers
- Carbon balance: ~100% based on the C-species released under oxygen combustion condition
- H₂ concentration reached ~80%

- Comparison between 0.3 g and 0.1 g injection
- Carbon balance: both ~100% based on the C-species release under oxygen combustion condition
- Only a slightly amount of H₂ was produced at the 5th injection
- No syngas (or hydrogen) was observed without steam injection
- Key parameters: Steam-carbon ratio and reduction extent

0.3 g injection

0.1 g injection

Cold flow model

Dual-fluidized bed gasifier

Publications, Patents, Presentations, Awards, and Commercialization

Accepted Publication:

Leo Brody[#], Runxia Cai[#], Alajia Thornton, Junchen Liu, Hao Yu, Fanxing Li. (2022) "Perovskite-based Phase Transition Sorbents for Sorption Enhanced Oxidative Steam Reforming of Glycerol." ACS Sustainable Chemistry and Engineering. 10(19): 6434-6445. DOI: doi.org/10.1021/acssuschemeng.2c01323

Publication under review:

Leo Brody, Mahe Rukh, Runxia Cai, Azin Saberi Bosari, Reinhard Schomacker, and Fanxing Li. (2023) "Sorption-enhanced steam reforming of toluene using multifunctional perovskite phase transition sorbents in a chemical looping scheme"

A patent application is being compiled, along with two more journal articles.

Commercialization outreach:

In discussion with a large chemical company about potential application for flexible syngas generation; In discussion with a leading catalyst manufacturer for sorbent synthesis.