This presentation does not contain any proprietary, confidential, or otherwise restricted information

BIOENERGY TECHNOLOGIES OFFICE

DOE Bioenergy Technologies Office (BETO) 2023 Project Peer Review

Deep Learning for Process Improvement and Predictive Scale-Up of Gas Fermentation

April 5, 2023 Agile BioFoundry Directed Funding Opportunities

Eric Sundstrom
Lawrence Berkeley National Laboratory

Project Overview

Objective: Leverage multi-scale bioprocess development, high-throughput proteomics, and deep learning models to achieve predictive scale-up for aerobic gas fermentation processes

Project team:

Technology platform

Elizabeth Clarke

Amanda Beverly

Bioprocess development

Eric Sundstrom (PI)

Carolina Barcelos

Proteomics

Chris Petzold

Deep learning

Phil Laible

1– Approach: Ethane to P3HP

Industrial Microbes platform: Methane monooxygenase engineered into *E. coli* maximizes both metabolic flexibility and genetic tractability

Initial application: Ethane to polyhydroxypropanate (P3HP)

Ethane conversion

- Available as off-pipeline flared natural gas
- Improved gas transfer and reduced cooling requirement vs methane
- Beachhead for C1 conversion

Natural Gas Biogas Carbon Dioxide Omnitroph Ethanol Methanol Plant Sugars Monomers Surfactants Alcohols Organic Acids Fatty Acids Amino Acids Fuels

P3HP

- Biodegradable alternative to polyethylene
- Applications in packaging, films, and agriculture

1- Approach: Bioprocess Development

IM bioprocess challenges

- Process safety
- No off-the-shelf equipment available
- No scale-up CMO or CRO facilities available
- Gas delivery and gas transfer
- Limited prior art

Bioprocess approach

- Leverage ABF capabilities:
 bench scale gas fermentors and
 300L pilot capabilities
- Couple with proteomics and deep learning approaches to predict scale-up performance

Ethanol: Bench scale Current SOT – tech transfer

Ethanol: Pilot scale

thane: Rench scale

Recommended strain and process improvements

Ethane: Demo and commercial scale

1– Approach: High throughput proteomics

- Sample preparation in 96-well plate format for reproducibility, low variance, and efficiency
- Quantitative proteomic data for over 1200 proteins in each sample
- Analysis of both on and off-pathway expression
- Data uploaded to the Experiment Data Depot (EDD) for the Learn team

1– Approach: Predictive modeling

Performance Layered physical/ ML/Al approaches and proteomics metabolic/ propose additional process challenges datasets regulatory models Varied bioreactor parameters in challenge/recovery experiments (for safety & productivity) Strain engineering and bioreactor process parameters modified to optimize safe, stable, scaled fermentation

2 – Progress and Outcomes

Six-month goals: Q2 FY23

- Evaluate baseline and execute tech transfer
- Harmonize TRY metrics to +/-15% between IM and LBNL

Final project goals: Q4 FY24

- Leverage model predictions to achieve 3x improvement over baseline TRY
- Demonstrate 300L ethanol scale-up within 10% of improved TRY

Current status

- Bench-scale technology transfer ongoing
- Proteomics baseline comparison completed
- Data harmonization and data sharing platforms established
- Initial ML analyses proceeding based on tech transfer training data

High throughput evaluation of protein abundance reveals significant similarity between 2L campaigns at LBNL and IM

2 – Progress and Outcomes: Technology Transfer

Technology transfer to LBNL currently within 20% of IM baseline across all performance metrics

3 – Impact

- Mission Relevance: Accelerates deployment of aerobic gas fermentation technologies while developing technology alternatives to displace recalcitrant plastics with biobased, biodegradable alternatives
- Industry Impact: Direct pathway to commercial impact via close collaboration with Industrial Microbes
- Capability development: Develops much-needed generalizable protocols and lessons learned for predictive process development and scale-up with aerobic gas fermentations
- Synergistic Research: Dissemination of lessons learned and project expertise within ABF, to associated programs – ABPDU, BETO CO2 Consortium, and to the broader biomanufacturing community via presentations and reports

Summary

- Problem statement: Can we utilize multi-scale bioprocess development and machine learning to overcome key barriers to successful gas fermentation scale-up?
- Current status: Tech transfer ongoing, all metrics within 20% of Industrial Microbes baseline, multi-site proteomics baseline established
- Final project goals: Deliver 3x improvement in TRY over baseline and validate at 300L pilot scale
- Project impact: Accelerated development and deployment for aerobic gas fermentation processes, displacement of petrochemical polymers
- Next steps: Initiate ethane fermentations in Q3 to initiate first gas fermentation DBTL cycle

Quad Chart Overview

Timeline

- October 1, 2022
- September 30, 2024

,	FY22 Costed	Total Award
DOE Funding	\$490k	\$1M
Project Cost Share	\$220k	\$500k

Project Goal:

this collaboration will leverage multi-scale experimentation to create a predictive model for bioconversion of ethane to Poly(3-hydroxy)propionate that identifies productivity improvements, forecasts scale-up performance, and enhances process robustness for gas fermentation.

End of Project Milestone:

Leverage model predictions to improve titer, rate, and yield for P3HP production from ethane by over 3x over initial baseline. Execute 300L ethanol fermentation and achieve TRY metrics within 10% or improved metrics.

Funding Mechanism:

Agile BloFoundry FY22 Directed Funding Opportunity

Project Partners

- LBNL, Eric Sundstrom (PI), esundstrom@lbl.gov
- Industrial Microbes, Elizabeth Clarke, Liz@imicrobes.com
- ANL, Phil Laible, laible@anl.gov

