

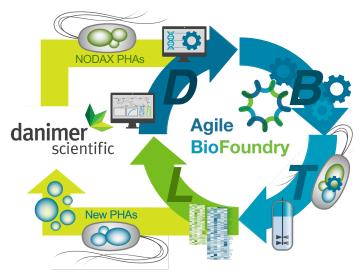
Energy Efficiency & Renewable Energy

BIOENERGY TECHNOLOGIES OFFICE

DOE Bioenergy Technologies Office (BETO) 2023 Project Peer Review

ABF Industry Engagement Lab Call with Danimer Scientific

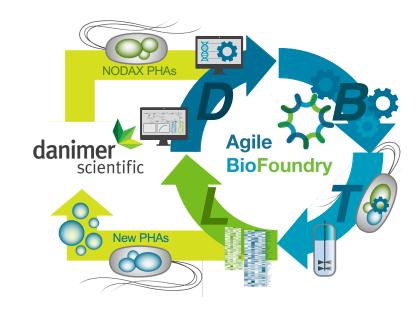
Date: April 5th, 2023 Technology Area Session: Agile BioFoundry


National Laboratory PI: Gregg T. Beckham Danimer PI: Carol Leggett

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project overview

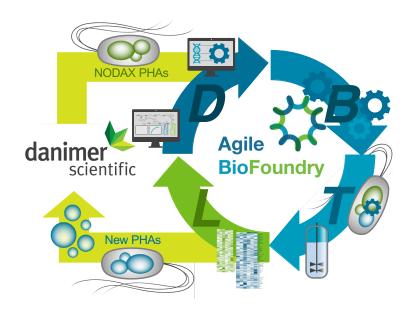
- Goal: Develop designer PHAs in an industrially relevant host for scale-up
- Motivation: Microbial PHAs can access new materials properties and corresponding applications based on side chain length and composition, including new applications of interest to Danimer
- Project started October 2021



Approach for project

- Leverage work on fatty acid biosynthesis in *P. putida* KT2440¹
- Engineer Danimer strains to tune PHA composition to desirable properties
- Use computational biology approaches in concert with systems biology tools to make strain modifications
- Metabolomics to identify and eliminate production of off-target compounds
- Bioprocess development at Danimer

1. McNaught, Kuatsjah et al., Metabolic Engineering 2023

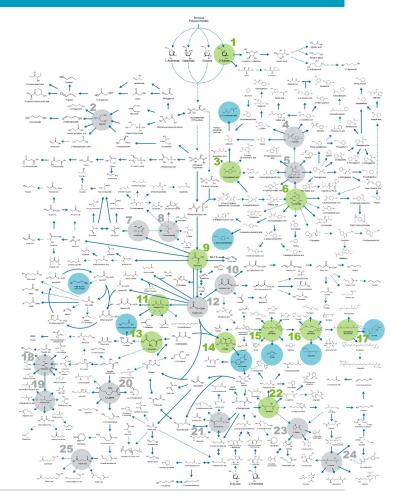


BIOENERGY TECHNOLOGIES OFFICE

Energy Efficiency & Renewable Energy

Progress and outcomes

- On-boarded Danimer strains
- Conducting iterative strain engineering and PHA characterization with GC-based methods
- Will send samples for –omics measurements in spring 2023
- Developing parallel pathways in ABF host, *Pseudomonas putida* KT2440, as a "transfer target"
- 18/24 month complete


Impact

Scientific

• Working to develop new PHA formulations that have not been reported in the literature and that could lead to new material properties for PHAs

Industry

• Working with Danimer to scale-up technology

BIOENERGY TECHNOLOGIES OFFICE

Quad chart overview

Timeline

- Project Start: 10/1/2021
- Project End: 9/30/2023

DOE Funding \$ 255,000 PNNL - \$70k NREL - \$185k \$ 500,000 PNNL - \$130k NREL - \$130k Cost Share NREL - \$185k NREL - \$370k	5	FY22 costed	Total Award (FY22-23)
		PNNL - \$70k	PNNL - \$130k
(Danimer)	Share		

Project Goal

Develop designer PHAs in an industrially relevant host for scale-up

End of Project Milestone

Demonstrate polymer composition by tuned strain within 10% of target composition (75% C4 and 25% C8, C10, and/or C12) & CRADA Final Report

Funding Mechanism FY20 ABF Directed Funding Opportunity

Project Partners

ABF Labs: NREL, PNNL Industry Partner: Danimer Scientific TRL at Project Start: 2 TRL at Project End: 3

Carle BioFoundry

6 | © 2023 Agile BioFoundry

BIOENERGY TECHNOLOGIES OFFICE

Energy Efficiency &

Renewable Energy

U.S. DEPARTMENT OF

Acknowledgements: DOE Technology Manager Gayle Bentley

Project Contributors:

NREL: Christopher Johnson, Megan Krysiak, Michelle Reed, Gabriel Rubinstein

PNNL: Kristin Burnum-Johnson, Young-Mo Kim, Jon Magnuson

Danimer Scientific: Carol Leggett, Phil Van Trump

BIOENERGY TECHNOLOGIES OFFICE

BIOENERGY TECHNOLOGIES OFFICE