This presentation contains information that is subject to the confidential business Information exemption of the Freedom of Information Act

BIOENERGY TECHNOLOGIES OFFICE

DOE Bioenergy Technologies Office (BETO) 2023 Project Peer Re-view

WBS: 2.5.3.713; ABF DFO with Invaio Engineering Anti-Microbial Peptide (AMP) Production in Fungi and Bioprocess Development

April 5, 2023
Technology Area Session: Agile BioFoundry

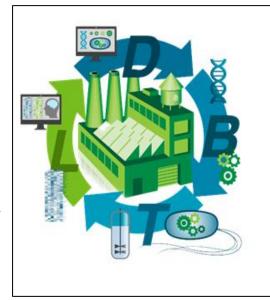
Jon Magnuson, Beth Hofstad, Ziyu Dai (PNNL) Davinia Salvachua (NREL) Bhanu Harrison (Invaio)

Project Overview

Objective: Develop a high-yield, cost-effective large-scale fermentation bioprocess to produce an Anti-Microbial Peptide (AMP) with Invaio

Mission of Project:

Develop an **innovative biological peptide** at a **scale** that has not previously been achieved and could have **impact on US and global agriculture**. In addition, knowledge and tools generated through this collaboration could be useful in application with other novel peptides, proteins and small molecules.



Approach for project

- R&D collaboration with the team at Invaio on development of expression/secretion host for peptides with antimicrobial action
- Utilize ABF knowledge of fungal genetic engineering for heterologous protein expression
- Utilize ABF targeted proteomics to confirm, quantitate and identify AMP peptide and potentially identify issues with the production of off-target proteins/peptides
- Utilize ABF bioprocess scale-up bioprocess optimization capabilities

Approach for project

Must haves:

- GRAS (Generally Recognized As Safe) host, or a host widely used in the production of food products
- AMP fermentation product is identical to what is found in nature
- Bioprocess can be scaled up for eventual commercial production

Goal 1: Develop a high-yield and cost-efficient bioprocess to produce AMP in a current ABF host

Goal 2: Scale up the process in stirred tank reactors and produce at least 100 grams of AMP at 1-5g/L

Risks

- Expression of an Anti-Microbial Peptide (AMP) in a microbe could prove difficult
- Ambitious scope and schedule with modest funding
- The AMP peptide is difficult to work with (toxicity/solubility/purification)

Mitigations

- Multiple fungal protein-expression hosts with genetic engineering tools were available in the ABF. Early down-select to the strain least affected by the AMP
- Milestones to drive progress with clear roles and responsibilities.
 Communication with BETO about progress and schedule.
- Monthly communication with Invaio about research directions and their experience working with the AMP: knowledge of its properties and handling procedures

Milestones

Milestone 1: Host Sensitivity to AMP Complete

- All strains showed some extracellular sensitivity at low levels of AMP but were inhibited at higher AMP levels
- Actual production of the AMP in situ is expected to have a different and lesser effect
- Outcome: Aspergillus niger is the best choice.

Milestone 2: Design & Build of Multiple AMP Expression strains Complete

 Multiple copies of AMP transgene expression cassettes should integrate into chromosomes randomly and Tag-Purification will be utilized to determine production

Outcome: 8 different transgenic strains for A.niger and 1 for Trichoderma reesei were built for AMP Expression

Milestone 3: Test Strains for AMP Production and Quantitate 80% Complete

- Many strains were tested for AMP Production
- Outcome: Two A.niger transgenic strains expressed AMP peptide, which was detected and confirmed

Milestone 4: Culture Optimization and Scale-Up 50% Complete

- Buffering, nitrogen source and other media component optimization, and scale-up in progress
- Outcome: Maintaining neutral pH and adding soy protein improved titer, scaling to 2L further improved titer

Progress and Outcomes of Milestone 2

Milestone 2: Design and Build of Multiple AMP Expression Strains in *A.niger*

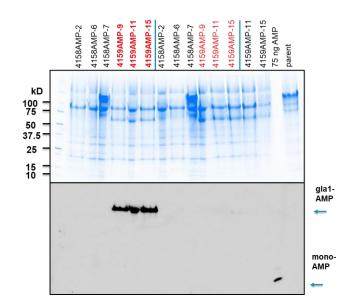
- Multiple AMP transgene expression strains were built
- The two constructs shown here have expressed AMP, as verified by Western blots and proteomics

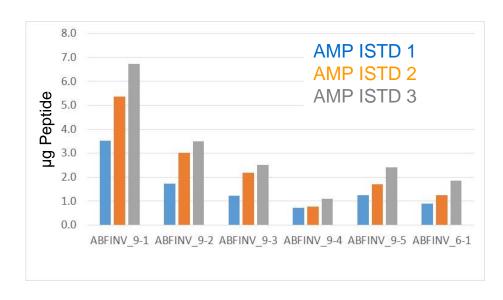
Positive AMP Construct 1 (4159AMP):

Positive AMP Construct 2 (4201AMP):

Key

gla1P: native glucoamylase promoter; **gla1**: glucoamylase; **AMP**: Anti-Microbial Peptide; **HN-tag**: (His-Asn)₆ purification tag; **Ttdh**: native terminator; **hph**: hygromycin phosphotransferase; **SP**: secretion signal peptide




Progress and Outcomes of Milestone 3

Milestone 3: Test for AMP Production, AMP Confirmation & Quantitation

Western Blot for AMP Detection

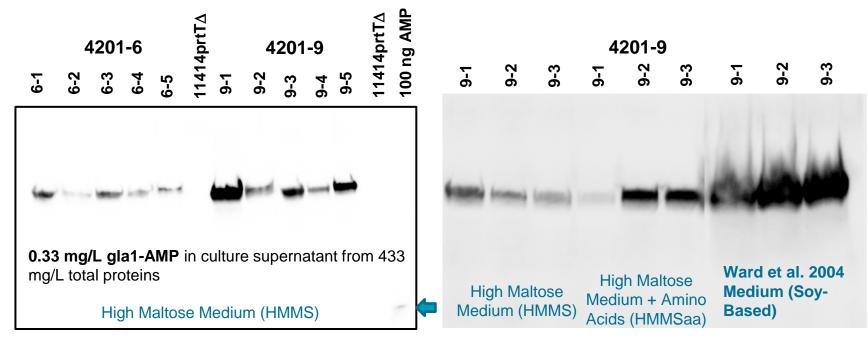
Targeted Proteomics for AMP Confirmation ¹³C-labeled peptides as internal standards (ISTD)

gla1 \(\Delta \text{ strain:}

4158AMP-2

4158AMP-6

4158AMP-7


4159AMP-9

4159AMP-15

Progress and Outcomes for Milestone 4

Milestone 4: Culture Optimization and Scale-Up

Western Blots: AMP production increased significantly with the first round of media optimization

Impact

Scientific

- Potential for manuscripts and patent applications to manufacture protein/peptide products, biochemically identical to the natural product
- Genetic engineering of industrial strains of protein-secreting fungi that could be generally applicable to producing functional proteins and peptides

Industrial

- Optimization and scale-up to move toward a price point enabling broad agricultural use
- Working in partnership with Invaio Biosciences to impact US and global agriculture with active biological peptides

Summary

Approach:

- Funding Opportunity project: industrial-ABF partnership leveraging our collective strengths (Invaio, PNNL, NREL) to address a research challenge on heterologous secreted peptide production
- Ambitious milestone-driven project plan with monthly communication to openly discuss research progress; identify and address challenges that arise

Progress:

- Suitable GRAS host selected, AMP peptide produced and confirmed by proteomics, initial media optimization performed
- Scale-up and further media/culture condition optimization is underway

Next Steps

 PNNL will move to our small-scale bioreactors to screen the optimized media and strain, sending product to Invaio for testing biological efficacy and quantitation.

Quad chart overview

Timeline

Project Start: 4/28/2021

Project End: 4/27/2023 (NCE)

	FY22 costed	Total Award (FY21- FY23)
DOE Funding	PNNL - \$152,000 NREL – \$0	\$ 410,000 PNNL - \$380,000 NREL – \$30,000
Cost Share	\$0	Invaio - \$102,500

Project Partners

ABF Labs: PNNL, NREL

Industry Partner: Invaio BioSciences

Project Goal

Develop a high-yield, cost-effective largescale fermentation bioprocess to produce an Anti-Microbial Peptide with Invaio and partners

End of Project Milestone

Conduct 100-L bioreactor cultivations to produce at least 100 grams of AMP at 1-5g/L to deliver to Invaio for quantitation and efficacy testing.

Funding Mechanism

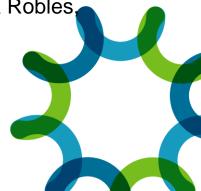
FY21 ABF Directed Funding Opportunity

TRL at Project Start: 3 TRL at Project End: 4

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Acknowledgments

DOE Bioenergy Technology Manager: Gayle Bentley


ABF Project Contributors:

PNNL: Beth Hofstad (PM), Ziyu Dai (Genetic Engineering lead), Ana Robles,

NREL: Davinia Salvachua

Industrial Partner

Invaio Bhanu Harrison, Behnam Nazari, Pip Reeder and Connie Caron

