

2.3.1.318 Syngas Derived Mixed Olefin Oligomerization for Sustainable Aviation Fuel

April 07, 2023

Technology Area Session: Catalytic Upgrading

Karthikeyan Ramasamy

Pacific Northwest National Laboratory

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

Develop and demonstrate mixed olefin (C₂-C₅) co-oligomerization to enable multiple renewable feedstocks to produce SAF

Project Goal

Develop a C₂–C₅ co-oligomerization catalyst and demonstrate an efficient path to generating sustainable aviation fuel (SAF) from syngas via a mixed olefin intermediate

Outcome

- Co-oligomerization catalyst development that is stable for mixed olefins derived form methanol to olefin process
- Produce >1 L finished jet fuel from this process that meet the ASTM standards for Tier α and β analysis

Relevance

Develop technologies that can achieve greenhouse gas (GHG) reduction of >70% for SAF production from renewable feedstocks

Source: https://www.energy.gov/sites/default/files/2022-09/beto-saf-gc-roadmap-report-sept-2022.pdf

1-Approach

Co-oligomerization of mixed olefins to demonstrate efficient path to produce SAF via syngas

- Leveraging existing commercial processes and feedstocks will be the most efficient path toward producing SAF in the near-term
- Developing mixed olefin co-oligomerization is key to achieve an end-to-end commercial pathway for producing SAF from syngas derived from various renewable feedstock

1-Approach (Project Management) Integrated work between PNNL, WSU and Haldor Topsoe

- Integrated workflow and handoff points between the partners based on the core capability and the technical expertise
- Regular meetings between the partners for the technical updates

1 – Approach (Project Management) Diversity, Equity, and Inclusion (DEI) Plan: Hired a summer intern through PNNL's diversity internship program

Project DEI Task: Hire at least one student from groups under-represented in STEM

- PI of this project participated in The Energy and Environment
 Diversity Internship Program (EEDIP) program designed for students
 passionate about environmental and clean energy science
- This is a competitive opportunity supports traditionally underrepresented students in target technical areas through a 10-to-12week paid internship

Outcome:

- Hired a Bachelor of Science Chemical Engineering student through PNNL's EEDIP program
- Student is planned to work at PNNL between June August 2023 to participate in the cooligomerization catalyst/process development activities

1. Approach

Requires hybrid catalyst containing both metal and acid sites

- Activation of C₂ and C₃₊ goes through different reaction mechanism and active sites
- Integrating both metal and acid catalysis pathways are key to facilitate cooligomerization of C₂ and C₃₊ olefins to produce SAF

1. Approach Addressing risk and measuring progress

Milestone (Sep 2022): Produce 100 mL of finished jet fuel sample from the representative Methanol to Olefin (MTO) feedstock

Completed

Milestone (Sep 2023): Demonstrate the integration between Methanol-to-Olefin (MTO) reactor and oligomerization reactor to evaluate the feedstock impurity effect of the catalyst performance

Ontrack

Milestone (Sep 2024): Demonstrate extended operation (>500 hours) of an integrated process using engineered catalysts with on-stream regeneration

Ontrack

Risk Mitigation:

Low product yield and catalyst deactivation on single-step mixed olefin oligomerization:

Perform oligomerization in staged two-zone reactor with independently optimized catalyst, still achieving goal of significantly reducing process intensity.

Go/ No-Go Completion: Production of 100 mL of finished jet fuel starting from MTO mixed olefin feed and complete analysis of Tier α and Tier β properties meeting ASTM standards at ≥50% blend level. **December 2022**

2. Progress and Outcome Construction of new reactor system that handles multiple olefin feed

Constructed new reactor systems to carry out co-oligomerization of C₂-C₅ mixed olefins

2. Progress and Outcome Metal catalyst alone doesn't promote the chain growth beyond dimerization

 Co-oligomerization of ethylene (C₂⁼) and propylene (C₃⁼) using the baseline metal catalyst at varying temperature in a plug flow reactor system

- Operating Conditions: WHSV: 0.8 h⁻¹, Feedstock: equimolar C₂-C₃, Pressure: 100 psi, Temperature: 200 275 °C
- Products obtained from C_2^- and C_3^- co-oligomerization are primarily between C_4 - C_6 range with C_5 being the major project
- Significant cross oligomerization between C₂ and C₃ with minimal chain growth
- Outcome: Optimized metal composition and loading for co-oligomerization of C₂ and C₃

2. Progress and Outcome Sequential catalyst bed is active and selective to the oligomerized products

Operating Conditions: WHSV: 0.8 h⁻¹, Feedstock: equimolar C₂-C₃, Pressure: 100 psi, Temperature: 275 °C

- Both hybrid and sequential catalyst exhibited ~70% selectivity to C₈-C₁₆ compounds
- Hybrid catalyst produced higher fraction of light olefins and 6x higher aromatics compared to sequential catalyst
- Hybrid catalyst suffers severe deactivation compared to sequential catalyst

2. Progress and Outcome

Moderate acidity is required to maintain the balance between product selectivity and conversion

Operating Conditions: WHSV: 0.8 h⁻¹, Feedstock: equimolar C₂-C₃, Pressure: 100 psi, Temperature: 275 °C

- Catalyst with moderate acidity exhibited both higher conversion and selectivity to desired jet range products
- Higher acidity (Si/Al:30) tend to have cracking as side reaction

2. Progress and Outcome

Demonstrated the sequential catalyst bed system with high selectivity and activity

 Single step cooligomerization of C₂⁼ and C₃⁼ using sequential bed containing metal and acid catalyst

Operating Conditions: WHSV: 0.8 h⁻¹, Feedstock: equimolar C₂-C₃, Pressure: 100 psi, Temperature: 275 °C

- >90% conversion of both ethylene and propylene; >75% selectivity to jet range (C₈-C₁₆) olefins
- Stability of the sequential catalyst system— ~ 50 h continuous time on stream

2. Progress and Outcome Co-oligomerization of mixed olefins (C_2 - C_5) performs similar to the C_2 - C_3

Operating Conditions: WHSV: 0.8 h⁻¹, Feedstock: equimolar C₂-C₅, Pressure: 100 psi, Temperature: 250 - 275 °C

- Composition of olefin feedstock merely affect ethylene conversion and the selectivity to jet range (C₈-C₁₆) remains the same
- Higher selectivity obtained at lower temperature could be attributed to lower cracking activity
- Demonstrated co-oligomerization of mixed olefin (C₂-C₅) as feedstock

2. Progress and Outcome

Produced SAF sample >100mL for the fuel property analysis

Finished Fuel (>100 mL)

- Completed the co-oligomerization followed by hydrogenation to generate the finished fuel
- Generated > 100mL of finished fuels to conduct the initial Tier α and Tier β sustainable aviation fuel property analysis at Washington State University

2. Progress and Outcome

Co-oligomerized samples met the Tier α and Tier β fuel property requirements at 50% blend level

- Density of neat fuel low further adjustment in composition (n-, iso- and cycloalkane) is required
- Properties of jet fuel produced by co-oligomerization process meeting Tier α and Tier β ASTM standard at ≥50% blend level

2. Progress and Outcomes Research progress and timeline

Start End
October 2021
September 2024

FY22: Optimization hybrid and /or sequential catalyst to demonstrate co-oligomerization of mixed olefins (C_2-C_5) to produce ~75% jet range compounds.

- Developed sequential catalyst containing both metal and acid sites and demonstrated co-oligomerization
- Successfully completed Go/No-Go

FY23: Demonstrate 100 h time-onstream using an integrated reactor system (metal and acid catalyst bed) and fuel properties meeting Tier α and Tier β ASTM standards, and complete process analysis

- Catalyst deactivation spent catalyst characterization
- Fine tuning catalyst structure and process parameters – improve catalyst lifetime
- Detailed process analysis
- Synthesize powdered catalyst and provide to industrial partner

Engineered catalyst testing and demonstration

FY24: Engineered catalyst development, process integration, and demonstration

3. Impact Supports near term decarbonization of aviation industry by maximizing SAF yield

Jet fraction (SAF) yield from the major syngas conversion technologies compared to the Methanol-to-Olefin-and-Oligomerization (this work).

- Maximize the carbon efficiency from syngas to SAF and reduce/ eliminate the other fuel fractions
- Leverage existing commercial process for the transformation of syngas intermediate to produce SAF
- Potential to de-risk and integrate the unit operations at a rapid rate to support the aviation industries net zero emission goals
- Industrial institution interest (to convert methanol to SAF

3. Impact

Supports the long-term aviation industry decarbonization goals

- Syngas obtained from waste source (e.g., MSW) can potentially provide ~65% of the global aviation fuel requirement by 2050
- Renewable electricity can enable the CO₂ conversion to syngas and then to SAF further increase the global SAF contribution by 2050

Summary Enable the technology towards commercialization

Overview

Develop a C₂–C₅ co-oligomerization catalyst and demonstrate an efficient pathway to produce sustainable aviation fuel (SAF) from syngas via a mixed olefin intermediate

Approach

Developing catalyst that enables integrating both metal and acid catalysis pathways which are key to facilitate co-oligomerization of C₂ and C₃₊ to produce SAF

Impact

Demonstrated co-oligomerization process with mixed olefins (C_2 - C_5) as feedstock to produce jet range hydrocarbons – Meeting Tier α and Tier β standard at \geq 50% blend level

Progress & Outcome

Developed the hybrid catalyst system and optimized reaction condition to achieve C_2 – C_5 co-oligomerization with \geq 75% selectivity to jet range (C_8 – C_{16}) products

Future Work

Demonstrate co-oligomerization to produce jet range product with catalyst lifetime >500 h using engineered catalyst

Quad Chart Overview

Timeline

Project start date: October 2022

Project end date: September 2025

	FY 22	Total Award
DOE Funding	\$530,000	\$1,630,000 (FY 2022-2024)
Project Cost Share*	NA	NA

TRL at Project Start: 2

TRL at Project End: 4

Project Goal:

Develop sustainable aviation fuel (SAF) production process from syngas derived mixed olefins and demonstrate the commercial path to achieve 70% reduction in greenhouse gas emissions.

End of Project Milestone:

Production of 1 L of finished jet fuel from syngas derived mixed olefins with fuel properties meeting Tier α and Tier β standard and completion of 500 hours continuous operation (with intermittent regeneration) using engineered catalysts with >75% yield to fuel-range products.

Funding Mechanism: AOP Lab Call

Project Partners

- Washington State University
- Topsoe

Acknowledgement

- □ Pacific Northwest National Laboratory: Udishnu Sanyal, Mond Guo, Anthony Giduthuri, Laura Meyer
- ☐ Washington State University: Joshua Heyne, Harrison Yang,
- ☐ Topsoe: Pablo Beato, Esben Taarning
- □ Bioenergy Technology Office: Sonia Hammache

This research was supported by the DOE Bioenergy Technology Office under Contract no. DE-AC05-76RL01830 with the Pacific Northwest National Laboratory

Thank you

