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1.0  INTRODUCTION 
 
1.1  Purpose  
 
This report presents the results of radiochemical testing of leachate and groundwater at 
six Waste Management, Inc. (WM) landfills, as requested by the California State Water 
Resources Control Board (SWRCB) and applicable regions of the California Regional 
Water Quality Control Board (RWQCB).  The data from all WM sites included in the 
SWRCB testing program are compiled and evaluated in this report, as discussed with, 
and approved by the SWRCB during an August 23, 2002 meeting between WM and 
SWRCB representatives.  The intent of a combined report is to allow for more 
meaningful data interpretation.  Because all of the radiochemical parameters measured 
as part of the SWRCB program occur naturally, identification of anomalous results is 
confounded by the inherent variability of radioactivity in the environment.  Incorporation 
of all WM data in a single report is intended to provide more meaningful and proper 
consideration of naturally-occurring radiochemical sources and associated natural 
variability of radiochemical background levels. 
 
The radiochemical testing program for the six WM landfills presented herein was a 
coordinated effort using consistent sampling procedures, analytical methods and data 
evaluation techniques.  The data and information included in this report fulfill the 
SWRCB/RWQCB radiochemical testing and reporting requirements, summarized in 
Section 1.2, for the following WM landfills: 
 

• Altamont Landfill and Resource Recovery Facility, Livermore, California  
 
• Anderson Landfill, Anderson, California 
 
• Bradley Landfill and Recycling Center, Sun Valley, California 

 
• El Sobrante Landfill, Corona, California  

 
• Kettleman Hills Facility, Kettleman City, California  

 
• Redwood Landfill, Novato, California  

 
The geographic locations of the above landfills are shown on Figure 1. 
 
1.2  SWRCB/RWQCB Radiochemical Testing and Reporting Requirements 
 
On April 25, 2002, the SWRCB issued a letter to each of California’s RWQCBs 
requesting radiochemical testing of landfill leachate and groundwater for selected 
landfills in their respective regions.  Each RWQCB, in turn, issued a letter directly to 
affected landfills on the SWRCB list.  The list of affected landfills was modified by the 
SWRCB in a July 18, 2002 letter to Solid Waste Industry Group (SWIG) representatives, 
on which the RWQCBs were copied. 
 
The purpose of the radiochemical testing program, as stated in the April 25, 2002 
SWRCB letter is to “establish basic information on radioactivity in leachate and 
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groundwater beneath landfills in the State.”  In their letter, the SWRCB concluded that 
California landfills could be expected to contain naturally-occurring radioactivity, 
including radioactivity from naturally-occurring potassium-40 in food products such as 
bananas and salt substitutes.  The SWRCB did not, however, make note of the expected 
presence of natural radioactivity in groundwater, particularly from uranium-238 and its 
decay products.  Uranium-238 and its decay products are responsible for the greatest 
contribution of radioactivity observed in natural waters (Hem, 1992), and occur in such 
significant concentrations in natural waters that they are a major focus of the U.S. 
Environmental Protection Agency (EPA) under the federal Safe Drinking Water Act 
(EPA, 2000).  
 
Program requirements outlined by the SWRCB in their April 25, 2002 letter to the 
RWQCBs were general in nature and described the types of samples to be collected and 
radiochemical analyses to be performed.  Each RWQCB, in turn, communicated the 
general SWRCB requirements to the affected landfills, setting RWQCB-specific 
deadlines and, in some cases, prescribing specific sampling locations and reporting 
requirements.  Table 1 summarizes the general SWRCB program requirements, as well 
as the specific RWQCB program requirements, for the six WM landfills presented in this 
report.  As shown on Table 1, original program deadlines were extended until January 
2003 with the earliest deadline of January 15, 2003. 
 
1.3  Technical Concerns  
 
The California Solid Waste Industry Group (SWIG) submitted a letter to the SWRCB on 
June 20, 2002, detailing several regulatory and technical concerns regarding the 
SWRCB’s proposed radiochemical testing program.  The primary concern, detailed in 
the June 20, 2002 SWIG letter, was the lack of clearly defined project objectives, which 
precluded development of an effective sampling plan and data evaluation strategy.  The 
SWIG letter noted that if the SWRCB’s premise is that the program will identify sites 
where inadequate load checking procedures enabled acceptance of radioactive wastes, 
then the program results will likely be confounded by naturally-occurring radionuclides 
and yield potentially erroneous conclusions.  In particular, the SWIG noted that the 
SWRCB program does not include a procedure for proper data evaluation, including the 
necessary consideration of naturally-occurring radionuclides. The following major points 
were communicated:  
 

• Evaluation of radiochemical data is meaningless without the ability to compare 
the results to natural background levels.  The distribution of naturally-occurring 
radionuclides depends on the distribution of rocks from which they originate and 
the processes which concentrate them (USGS, 1994).  Previous studies by the 
U.S. Geological Survey (USGS) suggest that characterization of background 
levels is difficult due to the high variability of radionuclide concentrations as a 
function of lithology, depth, age of water, etc.  Additionally, inorganic parameters 
such as chloride, calcium, barium, TDS, and dissolved oxygen can affect the 
mobility of radionuclides in groundwater, further confounding the development of 
background levels.   
 

• The current program utilizes data evaluation methods and associated trigger 
mechanisms tied to comparison with drinking-water standards.  This approach 
lacks the pragmatic decision-making process necessary in the evaluation of 
naturally-occurring constituents in groundwater, and it can falsely generate 
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erroneous conclusions and unwarranted further testing.   These concerns are 
substantiated by recent USGS studies which have demonstrated that many of 
the nation’s drinking-water aquifers exhibit natural radionuclide concentrations in 
excess of drinking-water standards (Focazio, et. al, 2001; USGS, 1996).    
 

• Similar to the procedures developed for evaluating naturally-occurring inorganic 
parameters in groundwater (such as iron or manganese), statistical methods 
would be required to properly characterize background radionuclide levels before 
any meaningful data evaluation could be completed.  As prescribed under CCR 
Title 27 and Federal Subtitle D Regulations, development of rigorous statistical 
procedures is required to assess deviations from background conditions. Since 
radionuclides are also naturally-occurring, similar types of procedures are 
necessary for a meaningful evaluation of radionuclide data.  However, this issue 
is further complicated by the physical characteristics of radionuclides in that they 
will undergo natural transformations not associated with landfilling activities.   In 
addition, it is extremely important to note that spatial variability is a significant 
concern at most landfill sites, and simple upgradient to downgradient 
comparisons will have a high probability of yielding erroneous conclusions. 

 
• The current program does not indicate how the data to be collected will be 

utilized and disseminated to the general public.  It is imperative that the data be 
released in a manner that assures a fair and balanced presentation in the context 
of natural radioactivity.  There should be emphasis placed on understanding and 
explaining the naturally-occurring sources of radioactivity.  Without proper 
context, this program has the potential to generate misleading and alarming 
information. 

 
A meeting was held between SWIG representatives and SWRCB staff on August 23, 
2002 to discuss the concerns expressed by the SWIG in their June 20, 2002 letter to the 
SWRCB.  Based on the meeting, the SWRCB agreed to (1) allow a combined technical 
report that would allow a more comprehensive presentation of the data collected and (2) 
consider review of the data collected by a SWRCB-selected technical review panel, so 
the data can be evaluated in proper context (i.e., with respect to natural radioactivity) 
and disseminated to the public in a manner that assures a fair and balanced 
presentation in the context of natural radioactivity.  
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2.0  NATURALLY-OCCURRING RADIONUCLIDES 
 
This section presents information on potential natural sources of the radionuclides that 
are the focus of this testing program.  Relevant information on background geochemical 
issues is also presented.  The purpose of this section is to provide a more meaningful 
context in which the radiochemical data collected for this program can be evaluated. 
 
2.1  Background Issues 
 
As expressed in the June 20, 2002 SWIG letter to the SWRCB, the absence of a 
meaningful standard against which the collected radiochemical data will be compared is 
a primary concern for this program.  Naturally-occurring radionuclides are ubiquitous 
trace elements found in rocks and soils (Focazio, et. al., 2001).  Because all of the 
radiochemical parameters measured as part of this program occur naturally, it is difficult 
to assess whether the reported values are anomalous with respect to natural 
background levels.   
 
Maximum contaminant levels (MCLs) developed by the EPA can be used to assess risk 
for drinking water but are not particularly relevant to non-potable groundwater and landfill 
leachate.  Furthermore, exceedance of a water quality standard (without a thorough 
understanding of natural background conditions) cannot be used to identify potential 
impacts to the environment resulting from operations at a landfill or any other type of 
facility.  It is important to understand that exceedance of an MCL in leachate would be of 
no great surprise, nor of any real significance.  Landfill leachate typically contains 
chemicals in excess of water quality standards, and, for that reason, current landfill 
design standards require construction of a leachate collection and removal system 
(LCRS) to prevent leachate from entering waters of the State. 
 
Extensive research on background radioactivity in selected aquifer systems has been 
conducted by the EPA and USGS in support of the final Radionuclides Rule recently 
developed under the Safe Drinking Water Act (EPA, 2000).  As part of USGS’s research 
for the final Radionuclides Rule, a national reconnaissance survey of selected 
radionuclides in public groundwater supplies was performed (Focazio, et. al., 2001).  
Ninety-nine samples were collected from 27 states and 8 physiographic provinces, with 
94 of those samples collected from wells in use for drinking water.  The results showed 
that 21 of the 99 samples collected exceeded the MCL for combined radium-226 and 
radium-228 due to natural radioactivity (Focazio, et. al., 2001).  Another USGS study for 
the National Water Quality Assessment Program showed that 80 percent of 267 samples 
from drinking-water wells in the Lower Susquehanna and Potomac River Basins 
exceeded the proposed drinking-water standard for radon, due the decay of natural 
uranium (USGS, 1996).  These results further highlight the ubiquitous nature of the 
radionuclides of concern and the problematic aspects of comparing non-potable 
groundwater and leachate samples from landfills to drinking-water standards. 
 
2.2  Pertinent Radionuclide Considerations 
 
The natural radionuclides include the primordial elements (e.g., uranium and thorium) 
that were incorporated into the Earth’s crust during its formation, the radioactive decay 
products of these primordial elements, and radionuclides that are formed in the 
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atmosphere by cosmic ray interactions, e.g., tritium (EPA, 2000).  Most natural 
radioactivity is generated through the progressive decay of naturally-occurring 
radionuclides through three decay series, beginning with uranium-235, thorium-232, and 
uranium-238, and referred to as the “Actinium Series,” “Thorium Series,” and  “Uranium 
Series,”  respectively (see Figures 2, 3, and 4). 
 
The Uranium Series is the most predominant contributor to radioactivity in groundwater 
(Hem, 1992).  However, other lighter radioisotopes (e.g., potassium-40 and tritium) can 
be present in measurable quantities in natural water.  For the heavier isotopes (e.g., 
from the above decay series), each transformation emits an alpha- or beta-particle unit 
(and, in some cases, gamma radiation), creating daughter products, until stability is 
achieved with one of three stable isotopes of lead.  Figures 2, 3, and 4 show the half-life 
and type of decay (i.e., alpha or beta) for each of the daughter products.   
 
The occurrence of radionuclides in groundwater depends first on the presence and 
solubility of the parent products.  Each radioactive decay product has its own unique 
chemical characteristics that differ from the radionuclide parent.  Consequently, the 
occurrence and distribution of a parent radionuclide in solution does not necessarily 
indicate the presence of a daughter radionuclide in solution (EPA, 2000). 
 
Geochemical information on the behavior of the radiochemical parameters of interest for 
this study in groundwater is summarized below.  The information is brief and focused on 
issues pertinent to this study.  For more detailed information, the reader is referred to 
general radiochemistry textbooks as well as the research performed by EPA and USGS 
in support of the final Radionuclide Rule under the Safe Drinking Water Act. 
 
2.2.1  Uranium 
 
Uranium is found in concentrated amounts in granite, metamorphic rocks, lignites, 
monazite sand and phosphate deposits, as well as in the uranium-rich minerals of 
Uraninite, Carnotite, and Pitchblende (EPA, 2000).  Natural uranium in rock contains 
three isotopes: uranium-234 (0.006% by weight), uranium-235 (0.72%) and uranium-238 
(99.27%); the activity to mass ratio of the sum of the three radioisotopes in rock is 0.68 
pCi/ug (EPA, 2000).  These crustal abundances of uranium are not duplicated in 
groundwater.  Uranium-234 is enriched in water relative to rock when standardized to 
uranium-238 in the water.  EPA uses a uranium-234/uranium-238 ratio of approximately 
1.0 to indicate the presence of natural uranium in groundwater; this natural uranium 
isotopic ratio may vary regionally, as well as seasonally, with uranium-234/uranium-238 
ratios ranging from 0.9 to 1.3 (EPA, 2000). 
 
Uranium concentrations in groundwater are predominantly redox controlled.   Uranium 
forms soluble complexes under oxygen-rich conditions, particularly with carbonates, 
causing higher concentrations in zones of recharge due to the relatively high solubility of 
the oxidized uranium (VI) species (EPA, 2000; Clark and Fritz, 1997).  Alternatively, 
uranium precipitates from groundwater under oxygen-poor conditions and can be 
concentrated in secondary deposits (Cothern and Rebers, 1990).  Consequently, 
uranium concentrations in water can be expected to range widely with different geologic 
environments.  USGS studies show that uranium is preferentially concentrated in 
wetland environments where uranium-rich rocks and soils occur (USGS, 1994). 
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2.2.2  Radium 
 
Radium-226 and radium-228 are derived from uranium and thorium, respectively.  
Radium-226 is the sixth member of the Uranium Series, has a half-life of approximately 
1,600 years, and decays by alpha-particle emission (see Figure 4).  Radium-228 is the 
second member of the Thorium-232 series, has a half-life of about 5.7 years, and 
decays by beta-particle emission (see Figure 3). 
 
Because uranium and thorium are ubiquitous components of rocks and soils, radium 
radionuclides are also ubiquitous trace elements in rocks and soils.  However, the 
chemical behaviors of the radium isotopes differ significantly from their parent 
radioisotopes.  As noted above, uranium solubility is primarily redox controlled with 
elevated uranium concentrations in zones of higher oxidation.  Alternatively, thorium is 
extremely insoluble (Cothern and Rebers, 1990) and, thus, is not subject to mobilization 
in most groundwater environments.  Groundwater with high radium-226 levels tends to 
have low uranium levels and vice-versa, even though uranium-238 is the parent of 
radium-226 (EPA, 2002). 
 
Radium isotopes tend to be most mobile in reducing groundwater that is chloride-rich 
with high concentrations of total dissolved solids (Zapecza and Szabo, 1986, Kramer 
and Reid, 1984).  Radium-228 activities tend to be the highest in arkosic sand and 
sandstone aquifers (Cothern and Rebers, 1990).  Radium behaves similarly to other 
divalent cations such as calcium, strontium, and barium.  Therefore, in aquifers with 
limited sorption sites, radium solubility can be enhanced by the common ion effect in 
which competing cations are present in abundance and occupy sorption sites keeping 
the radium in solution (EPA, 2000).  For example, relatively high concentrations of 
radium were found to be associated with groundwater in recharge areas that were 
geochemically affected by agricultural practices.  Such groundwater was strongly 
enriched with competing ions such as hydrogen, calcium, and magnesium (Szabo and 
dePaul, 1998).  For this reason, elevated concentrations of radium could occur in high-
TDS groundwater samples and landfill leachate samples. 
 
2.2.3  Potassium-40 
 
Naturally-occurring potassium is ubiquitous in the environment, a major crustal element, 
and a major nutrient for living organisms.  The radioactive component of natural 
potassium (i.e., potassium-40) comprises 0.012% by mass of naturally-occurring 
potassium.  Potassium-40 decays directly to stable calcium via predominantly beta 
emission and has a half-life of 1.27 billion years (Friedlander, et. al., 1964). 
 
Potassium-40 is a strong beta emitter that produces surprisingly high activity levels in 
rocks, soils, and many types of food.  It is well documented that foods such as bananas, 
artichokes, nuts, etc., emit activity levels on the order of 3,000 pCi/kg or more due to 
their natural potassium-40 content.  Natural potassium chloride (KCl, a common salt 
substitute) emits activities on the order of 500 pCi/g, or more than 20 times background 
soil, due to its potassium-40 content.  A salt shaker containing 100g of KCl salt 
substitute would exhibit a total activity of approximately 40,000 pCi.  Though such levels 
can be a significant contributor to both internal and external beta-particle exposure, 
potassium-40 is generally not of environmental concern because the absorption of 
potassium by the human body is under strict homeostatic control and, therefore, not 
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influenced by variations in environmental levels (Canada Department of National Health, 
1995). 
 
The mobility of potassium, and hence potassium-40, in the groundwater system is 
controlled primarily by the dissolution of potassium-bearing silicate minerals and cation 
exchange reactions involving the adsorption of potassium ions.  Although potassium is a 
major crustal element, it seldom occurs in high concentrations in groundwater due 
primarily to the general stability of potassium silicates and irreversible cation exchange 
reactions with clay minerals (Hem, 1992).  Alternatively, potassium concentrations in 
landfill leachate can reach relatively high concentrations (i.e., >100 mg/L) due to the 
dissolution of highly soluble potassium salts present in organic matter, including food 
and green waste, as well as fertilizers.  The most common potassium salt, KCl, is highly 
soluble in water and would be expected to be present in most landfill leachates in 
measurable concentrations and, therefore, act as a potentially significant source of 
natural radioactivity.  Mass-activity calculations indicate that approximately 1 pCi/L of 
activity can be expected for every 1 milligram of dissolved potassium in water with the 
vast majority of that activity being beta-particle activity (potassium-40 decay is 89% beta 
emission).  With an extremely long half-life, potassium-40-related beta activity may be 
expected to persist indefinitely in landfill leachate. 
 
2.2.4  Tritium 
 
Tritium is the radioactive isotope of hydrogen (3H).  It occurs both naturally and as a 
man-made by-product in industrial or medicinal radioactive materials, as wells as fallout 
from atmospheric nuclear weapon tests from the 1950s to the 1970s.   Tritium has a 
half-life of 12.43 years (Unterweger et al, 1980), is produced naturally by cosmic-ray 
interactions with the atmosphere, and is a very low-energy beta emitter.  Because of its 
very low energy level, tritium is used for a variety of unregulated industrial and consumer 
products that contain either gaseous tritium or luminous tritium-bearing phosphor (e.g., 
watches, compasses, depth gauges, exit signs, instrument dials, and street signs; 
Eisenbud, 1987). 
 
Input of anthropogenic tritium into the global groundwater system occurred in a series of 
spikes following periods of atmospheric testing of nuclear weapons that began in 1952 
and reached a peak in 1963-1964, when tritium concentrations in precipitation reached 
levels on the order of 105 pCi/L (Clark and Fritz, 1997).  Concentrations of tritium in 
precipitation have decreased significantly since the mid-1960’s bomb-testing peak, 
except for some relatively small increases from French and Chinese tests in the late 
1970s (USGS, 2002).  However, even at peak levels, anthropogenic tritium fallout was 
not regarded as a radiological threat to health (Clark and Fritz, 1997).  Canada imposes 
a tritium drinking-water standard of 7,000 Bq/kg (Clark and Fritz, 1997), which is 
approximately 190,000 pCi/L.  The EPA imposes a more conservative MCL for tritium in 
drinking water of 20,000 pCi/L. 
 
Elevated tritium levels in landfill leachates are well documented but are generally 
regarded to be of low radiological significance (Hicks, et. al., 2000).  In the United 
Kingdom, a study by Robinson and Gronow (1996) noted a mean tritium value of 7,714 
tritium units (or approximately 25,000 pCi/L) for 30 landfills.  That study concluded that 
“the source of tritium is likely to be general household and/or commercial disposal of 
tritium-containing items which have fulfilled their useful life, and are contained within 
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general waste streams being landfilled.”  Particular focus was paid to gaseous tritium 
light sources (GLTSs) used to construct gaseous tritium light devices (GLTDs) that are 
commonly used for fire-safety “exit” signs.  One GLTD can contain up to 1 Curie of 
tritium (Hicks, et. al., 2000), which can be released only if the GLTD is damaged. 
 
Tritium in water is highly mobile as the tritium atom becomes part of the water molecule.  
As part of the water molecule, tritium movement in the groundwater system is 
unimpeded by chemical reactions or other physicochemical processes that are known to 
affect other radionuclides (Hull and Hechanova, 2002).  However, tritium does not 
persist in the environment due to its relatively short half-life; approximately 75% of tritium 
in groundwater would decay in 25 years. 
 
2.2.5  Gross Alpha/Beta-Particle Activity 
 
The measure of gross alpha/beta-particle activity is (with some analytical limitations, 
including those described in Section 3.2.1) the sum of activities of alpha-emitting 
isotopes and beta-emitting isotopes, respectively.  In natural groundwater, uranium-238, 
radium-226, and polonium-210 are the principal alpha emitters in the dissolved phase 
(EPA, 2000).  Radon-222 is an alpha emitter in gaseous phase and is not measured as 
part of gross alpha-particle activity in water.  In natural groundwater, radium-226 and 
potassium-40 are the principal beta emitters (EPA, 2000; Welch et al., 1995).  Tritium 
and carbon-14 are low-level beta emitters that are not measured (in the case of tritium) 
or partially measured (in the case of carbon-14) as part of the gross beta-particle activity 
analysis (STL, personal communication).  Drinking-water standards developed by EPA 
for gross beta exclude any beta contribution by potassium-40.  According the final 
Radionuclide Rule for public water supplies, only when the beta-particle activity minus 
the naturally-occurring potassium-40 activity in a drinking-water supply sample exceeds 
50 pCi/L must the system speciate the beta emitters (EPA, 2001). 



 

 9  

3.0  SAMPLING AND ANALYSIS 
 
This section presents the following information:  (1) field sampling procedures (Section 
3.1); (2) analytical procedures (Section 3.2); and (3) descriptions of sampling locations 
for each landfill included in the testing program (Section 3.3).  Plot maps showing basic 
landfill features, groundwater flow direction, and radiochemical sampling locations are 
presented for each landfill in Figures 9 through 14. 
 
3.1  Sampling Procedures 
 
Sampling procedures were developed for this program based on consultations with the 
analytical laboratory, consultations with the field sampling team, and review of 
“suggested sampling protocols” provided by the SWRCB.  Appendix A presents the 
detailed sampling procedures implemented for this program.  Key aspects of the 
sampling procedures were: 
 

• Samples were collected unfiltered and unpreserved in the field. 
 

• Sample containers were pre-cleaned by the manufacturers to meet EPA 
Specifications and Guidelines for Contaminant Free Sample Containers, and 
come with a certificate of analysis.  One-liter high density Polyethylene (HDPE) 
containers were used for all parameters. 

 
• Samples were filtered through a 0.45-micron filter.  Preservation was performed 

by the analytical laboratory on receipt of the sample and within five days of 
sample collection. 

 
• One field blank was prepared for each sampling program using tested, reagent-

grade water supplied by the analytical laboratory. 
 

• Groundwater samples were collected in accordance with procedures outlined in 
the approved groundwater sampling plan for each site (i.e., wells were purged, 
field monitored, and sampled according to established standards). 

 
3.2  Analytical Procedures 
 
The analytical procedures used for this program were consistent for the landfills 
presented herein and were developed in consultation with analytical laboratories, SWIG, 
and technical consultants.  The analytical protocols incorporated the guidance provided 
by the SWRCB and RWQCB (i.e., types of analyses and thresholds for gross alpha).  All 
laboratory measurements of radiochemical parameters were performed by Severn Trent 
Laboratories (STL) in St. Louis, Missouri.  STL is a California State Department of Health 
Services (DHS)-certified laboratory for all the required radiochemical analyses. 
 
Figure 5 presents a flow chart summarizing the analytical protocol used for this program.  
As shown on Figure 5, samples were analyzed for tritium by EPA Method 906.0 and 
initially screened for gross alpha/beta-particle activity using EPA Method 900.0.  As 
requested by the SWRCB, if gross alpha-particle activity was detected above 5 pCi/L but 
less than 15 pCi/L, then the sample was analyzed for radium-226 and radium-228 using 
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EPA Method 9315 and EPA Method 9320, respectively.  If gross alpha-particle activity 
was detected above 15 pCi/L, then the sample was analyzed for uranium using method 
DOE RP-725 for speciated uranium (uranium-234, uranium-235, and uranium-238) in 
addition to radium-226 and radium-228.  Method references are provided in the Certified 
Analytical Reports (Appendix B); detailed laboratory standard operating procedures 
(SOPs) for the methods are available on request. 
 
In most cases, the detection limits for gross alpha-particle activity by EPA Method 900.0 
were above 15 pCi/L, precluding the use of this method for identifying the need for any 
additional radium and uranium analyses.  In order to achieve detection limits below 
5pCi/L and support the ability to make a decision on the need for additional radium and 
uranium testing, gross alpha-particle activity was measured using SMWW Method 7110 
(gross alpha by coprecipitation) for those samples where EPA Method 900.0 lacked 
sensitivity. 
 
Problems with the analytical sensitivity of EPA Method 900.0 are described in further 
detail in Section 3.2.1.  Details on interpreting analytical results are presented in Section 
3.2.2. 
 
3.2.1  Limitations on Gross Alpha/Gross Beta-Particle Activity Measurements 
 
High concentrations of dissolved solids in several samples resulted in increased 
detection limits for those samples.  This situation occurred for all landfill leachate 
samples, as well as many groundwater samples.  As discussed previously, many 
landfills are situated in areas of naturally poor groundwater quality, with elevated 
concentrations of dissolved solids.  
 
The primary non-radioactive interference for the gross alpha/beta-particle activity 
analysis, using a gas flow proportional counter (GFPC), is residue mass (derived from 
dissolved solids).  As the sample aliquot is concentrated under acidic conditions, the 
solid material contained in the sample, as well as any crystallization of salts, is deposited 
on the stainless steel planchet.  This mass effectively blocks a portion of the alpha 
particles and, to a lesser degree, beta particles.  This blocking effect is referred to as 
“self-absorption of attenuation.” (STL personal communication, Dec. 9, 2002). 
 
During calibration of a GFPC, an attenuation calibration is performed.  This measures 
the effect of increasing mass to the efficiency of the detector.  Figures 6 and 7 show 
attenuation charts for alpha and beta, respectively.  The alpha attenuation curve shows 
a significant reduction in counting efficiency as the mass increases.  This is due primarily 
to the relatively large size of alpha particles and their resulting inability to escape from 
the residue mass.  The beta attenuation curve demonstrates a reduced effect because 
the relatively higher energy and smaller size of beta particles are less inhibited by the 
residue mass, relative to alpha particles. 
 
The internal standards for the analysis of samples for gross alpha/beta-particle activity 
allow a maximum residual mass of 100 mg.  At this threshold, the analytical laboratory 
concludes that the reduction in counting efficiency no longer permits an accurate 
assessment of sample activity (STL personal communication, Dec. 9, 2002).  During the 
preparation of samples for analysis, a prescreen is performed to determine the aliquot 
size that would approximate a 70 mg residual mass.  In samples with high solids 
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content, this aliquot can be only a few milliliters.  This reduction in aliquot size also 
increases the uncertainty (2 sigma error) and detection limit.  A copy of the equations 
used for the generation of gross alpha/beta results is provided for verifying the effect of 
the reduced aliquot to final results (see Figure 8). 
 
3.2.2  Interpretation of Numerical Results 
 
Radiochemical parameter results for this program are reported in terms of “activity” 
which is defined as the number of nuclear transformations (i.e., decay) of a radioactive 
substance which occur in a specific time interval (EPA, 1991).  Results are expressed in 
terms of activity because it is not the mass of the radiochemical parameter of interest, 
but the radioactive emissions.  Activity is related to half-life, which is defined as the 
length of time required for a radionuclide to lose 50% of its activity by decay.  A 
radionuclide with a shorter half-life (e.g., radium-226 at 1,600 years) emits higher activity 
whereas a radionuclide with a longer half-life (e.g., uranium-238 at 4,500,000,000 years) 
emits lower activity (EPA, 2000).  A radionuclide half-life can range from millionths of a 
second to billions of years (NRC, 2001).  The decay rates of the radionuclides of interest 
for this study were previously discussed in Section 2.2. 
 
The specific activity unit reported for data presented herein is picocuries per liter (pCi/L).  
One Curie is equal to a nuclear transformation rate of 3.7x1010 decays per second.  One 
picocurie is equal to 10-12 Curies, which equates to one decay per 27 seconds or 2.2 
decays per minute.  Analytically, the laboratory measures the minimum detectable 
activity (MDA) for a specific analytical procedure. The MDA is the smallest amount of 
activity that can be measured given the conditions of a specific sample.  The MDA is 
reported at the 95% confidence level, meaning that there is a 5% chance that a false 
signal was reported as activity, and a 5% chance that true activity went undetected (STL 
SOPs).   
 
The MDA, which is purely a measure of activity (e.g., picocuries), is converted to activity- 
concentration units (i.e., picocuries per liter) by calculating the activity (i.e., picocuries) 
per unit volume (i.e., liters of aqueous sample).  The minimum activity concentration is 
designated the “MDC” (minimum detectable concentration) on the laboratory reports and 
can be viewed as a traditional analytical reporting limit.  All results are reported in activity 
concentration units (i.e., pCi/L) and expressed with an error term that expresses 
uncertainty in the form of +/- two standard deviations.  The statistical errors intrinsic to 
the counting of a sample decrease the longer a sample is counted (i.e., the number of 
counts in the region of interest go up, thus giving a better representation of the actual 
number).  Non-detected results can sometimes be expressed as negative values since 
the activity measurement incorporates the subtraction of background radioactivity.  The 
reporting of a negative value is not unusual given the uncertainties associated with both 
the measurement of radioactivity in the actual sample as well as in the background 
sample. 
 
For purposes of this report, results are presented in a manner typical of environmental 
analyses.  That is, numerical results are reported without an error term and non-detected 
values are simply expressed as less than the MDC.  The CARs (Appendix B) include the 
numerical error terms and numerical results below the MDC for interested reviewers. 
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3.3  Sample Locations and Rationale 
 
The following section summarizes the sampling locations at each of the six WM landfills 
included in the radiochemical testing program.  The Central Valley RWQCB prescribed 
specific sampling locations for Altamont Landfill and Anderson Landfill.  For the other 
sites, sampling locations were chosen based on the criteria provided in RWQCB 
correspondence.    
 
3.3.1  Altamont Landfill  
 
Samples collected for radiochemical testing at the Altamont Landfill were selected using 
the criteria set forth in the May 21, 2002 Central Valley RWQCB letter.  The following 
sample locations were selected: 
 

• LS:  the Unit 1 leachate sump 

• VD:  the Unit 1 valley subdrain 

• GWIB:  the Unit 1 groundwater interceptor barrier 

• Well E-05:  previously-impacted groundwater monitoring well providing 
information on landfill-impacted groundwater 

• Well E-07:  previously-impacted monitoring well providing information on landfill-
impacted groundwater 

• Well E-20B:  VOC-impacted monitoring well providing information on landfill-
impacted groundwater 

In addition, a groundwater sample from monitoring well MW-4A was collected to provide 
information on background radiochemistry.  Sample locations are shown on Figure 9.  
 
3.3.2  Anderson Landfill 
 
Sampling locations at the Anderson Landfill were selected using the criteria set forth in 
the May 21, 2002 letter from the Central Valley RWQCB.  The following sampling 
locations were selected: 
 

• MW-1:  upgradient groundwater monitoring well providing information on 
background radiochemistry 

• MW-2:  non-impacted groundwater monitoring well downgradient of the WMU 

• MW-4A:  non-impacted groundwater monitoring well downgradient of the WMU 

• MW-5:  non-impacted groundwater monitoring well downgradient of the WMU  

• L-WMU-2B:  WMU-2B leachate collection system 

 
Sample locations are shown on Figure 10. 
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3.3.3  Bradley Landfill 
 
Sampling locations at the Bradley Landfill were selected using the criteria set forth in the 
June 7, 2002 letter from the Los Angeles RWQCB. The following sampling locations 
were selected: 
 

• Well 4915A:  upgradient groundwater monitoring well providing information on 
background radiochemistry 

• Well 4916H:  VOC-impacted groundwater monitoring well providing information 
on landfill-impacted groundwater 

• Leachate Sump A 

• Leachate Sump B 

• Leachate Sump E 

 
Sample locations are shown on Figure 11. 
 
3.3.4  El Sobrante Landfill 
 
Sampling locations at El Sobrante Landfill in were selected using criteria consistent with 
other landfills as specific written guidance was not sent by the Santa Ana Region 
RWQCB until after sampling was performed.  Initially, El Sobrante Landfill received 
verbal direction from the Santa Ana RWQCB to proceed with the program as described 
in the April 25, 2002 SWRCB letter. 
 
Samples were collected at the following locations: 
 

• Well MW3-1:  upgradient well providing information on background conditions 

• Well MW-2:  VOC-impacted groundwater monitoring well providing information 
on landfill-impacted groundwater 

• LCRS Sump #2 

• LCRS Sump #3 

 
LCRS Sump #1 was not sampled because it did not contain liquid at the time of 
sampling.  Sample locations are shown on Figure 12. 
 
3.3.5  Kettleman Hills Facility 
 
Sampling locations at the Kettleman Hills Facility (KHF) in Kettleman City, California, 
were selected using the criteria set forth in the May 2, 2002 letter from the Central Valley 
RWQCB and verbal guidance to Mr. Paul Turek from Messrs. Shelton Gray and James 
Dowdall of the Central Valley RWQCB.  Focus was placed on the active WMUs at B-18 
and B-19 because there are no known landfill-related impacts to groundwater at the 
KHF.  Landfill B-18 is the only hazardous waste landfill evaluated in this study.  
Specifically, the following KHF sample locations were selected for radiochemical 
analysis: 
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• Well K67:  non-impacted well monitoring groundwater beneath landfill B-18 

• Well K71:  non-impacted well monitoring groundwater beneath landfill B-18 

• Well K68:  non-impacted well monitoring groundwater upgradient of landfill B-18 
and representing background 

• Leachate Sample B181AP:  primary LCRS in sump 1A of landfill B-18 

• Well K69:  non-impacted well monitoring groundwater beneath landfill B-19 

• Well K70:  non-impacted well monitoring groundwater beneath landfill B-19 

• Well K41: non-impacted well monitoring groundwater upgradient of landfill B-19 
and representing background 

• Leachate Sample B191AP:  primary LCRS in sump 1A of landfill B-19 
 
Sample locations are shown on Figure 13. 
 
3.3.6  Redwood Landfill 
 
Sampling locations at the Redwood Landfill were selected using the criteria set forth in 
the June 5, 2002 letter from the San Francisco RWQCB. The following sampling 
locations were selected: 
 

• Well MWH-8:  upgradient well providing information on background conditions 

• Well MWH-19:  non-impacted well monitoring groundwater downgradient of 
landfill 

• Leachate pump B (LD#B) 

• Leachate pump C (LD#C) 

• Leachate pump D (LD#D) 

  
Sample locations are shown on Figure 14. 
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4.0  RESULTS  
 

Table 2 summarizes the radiochemical results for all samples collected at the six WM 
landfills included in this program.  The CARs are presented in Appendix B and a diskette 
containing the data summarized in Table 2 is included in Appendix C.  For each landfill, 
individual sample points, sample types, dates of collection, analytical methods, and units 
are represented on Table 2.  In addition, a calculated TDS value is presented for each 
sample, based on the residue mass measured for the gross alpha/beta analysis. 
 
The following sections summarize the landfill-specific results. 
 
4.1  Altamont Landfill 
 
Groundwater Samples (4 samples): 
 

• Gross alpha-particle activity was detected in all samples, ranging from 3.28 pCi/L 
(E-07) to 11.8 pCi/L (E-20B).   

• No radium isotopes were detected in samples from wells E-05, E-20B, and MW-
4A, which were analyzed for radium-226 and radium-228 due to gross alpha 
results exceeding 5pCi/L.  

• No gross beta-particle activity was detected. 
• No tritium was detected. 
• No uranium analyses were necessary or performed. 

 
Leachate Samples (3 samples): 
 

• Gross alpha-particle activity was detected in all samples, ranging from 2.5 pCi/L 
(VD) to 5.9 pCi/L (GWIB). 

• Radium-226 (0.47 pCi/L) was detected in GWIB, which was analyzed for both 
radium-226 and radium-228 due to the gross alpha result exceeding 5pCi/L.  No 
radium-228 was detected. 

• No gross beta-particle activity was detected. 
• No tritium was detected. 
• No uranium analyses were necessary or performed. 

 
4.2  Anderson Landfill 
 
Groundwater Samples (4 samples): 
 

• No gross alpha-particle activity was detected. 
• No gross beta-particle activity was detected. 
• No tritium was detected. 
• No radium analyses were necessary or performed. 
• No uranium analyses were necessary or performed. 

 
Leachate Samples (1 sample): 
 

• No gross alpha-particle activity was detected. 
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• No gross beta-particle activity was detected. 
• No tritium was detected. 
• No radium analyses were necessary or performed. 
• No uranium analyses were necessary or performed. 

 
4.3  Bradley Landfill 
 
Groundwater Samples (2 samples): 
 

• Gross alpha-particle activity was detected in both samples, ranging from 6.5 
pCi/L (4915A) to 10.3 pCi/L (4916H).   

• No radium isotopes were detected in either sample (both samples were analyzed 
for radium-226 and radium-228 due to gross alpha results exceeding 5pCi/L).  

• Gross beta-particle activity was detected in both samples at 5.9 pCi/L.   
• No tritium was detected. 
• No uranium analyses were necessary or performed. 

 
Leachate Samples (3 samples): 
 

• Gross alpha-particle activity was detected in all samples, ranging from 3.9 pCi/L 
(Sump B) to 4.60 pCi/L (Sump A).   

• Gross beta-particle activity was detected in all samples, ranging from 187 pCi/L 
(Sump B) to 940 pCi/L (Sump E).  

• Tritium was detected in all samples, ranging from 3,710 pCi/L (Sump E) to 
10,500 pCi/L (Sump B). 

• No radium analyses were necessary or performed. 
• No uranium analyses were necessary or performed. 

 
4.4  El Sobrante Landfill 
 
Groundwater Samples (2 samples): 
 

• Gross alpha-particle activity was detected in both samples, ranging from 3.61 
pCi/L (MW-3-1) to 8.4 pCi/L (MW-2).   

• No radium isotopes were detected in sample MW-2, which was analyzed for 
radium-226 and radium-228 due to gross alpha results exceeding 5pCi/L.  

• Gross beta-particle activity was detected in one sample (MW-3-1) at 5.5 pCi/L.   
• No tritium was detected. 
• No uranium analyses were necessary or performed. 

 
Leachate Samples (2 samples): 
 

• Gross alpha-particle activity was detected in both samples, ranging from 2.63 
pCi/L (LCRS-2) to 3.84 pCi/L (LCRS-3).   

• Gross beta-particle activity was detected in one sample (LCRS-3) at 26 pCi/L.  
• Tritium was detected in both samples, ranging from 3,980 (LCRS-2) to 22,900 

pCi/L (LCRS-3). 
• No radium analyses were necessary or performed. 
• No uranium analyses were necessary or performed. 
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4.5  Kettleman Hills Facility 
 
Groundwater Samples (6 samples): 
 

• Gross alpha-particle activity was detected in all samples, ranging from 0.78 pCi/L 
(K70) to 1.77 pCi/L (K67). 

• No gross beta-particle activity was detected.   
• No tritium was detected. 
• No radium analyses were necessary or performed 
• No uranium analyses were necessary or performed. 

 
Leachate Samples (2 samples): 
 

• Gross alpha-particle activity was detected in both samples, ranging from 5.1 
pCi/L (B191AP) to 15.5 pCi/L (B181AP).   

• Radium-226 was detected in sample B181AP at 0.37 pCi/L; this sample was 
analyzed for radium isotopes due to gross alpha results exceeding 5pCi/L.  

• Radium-228 was detected in sample B191AP at 1.27 pCi/L; this sample was 
analyzed for radium isotopes due to gross alpha results exceeding 5pCi/L.   

• Uranium (total) was detected in sample B181AP at 1.75 pCi/L; this sample was 
analyzed for uranium isotopes due to gross alpha results exceeding 15pCi/L.   

• No gross beta-particle activity was detected.  
• No tritium was detected. 

 
4.6  Redwood Landfill 
 
Groundwater Samples (2 samples): 
 

• Gross alpha-particle activity was detected in both samples, ranging from 1.43 
pCi/L (MWH-8) to 9.92 pCi/L (MWH-19); note these are calculated values based 
on the radium-226 and isotopic uranium analyses performed on both 
groundwater samples in lieu of gross alpha by co-precipitation. 

• Radium-226 was detected in both samples, ranging from 0.42 pCi/L (MWH-19) to 
0.89 pCi/L (MWH-8). 

• Radium-228 was detected in both samples, ranging from 1.16 pCi/L (MWH-8) to 
2.99 pCi/L (MWH-19). 

• Uranium (total) was detected in both samples, ranging from 0.54 pCi/L (MWH-8) 
to 9.5 pCi/L (MWH-19). 

• No gross beta-particle activity was detected.   
• No tritium was detected. 

 
Leachate Samples (3 samples): 
 

• Gross alpha-particle activity was detected in one sample (LD#C) at 0.41 pCi/L; 
note this is a calculated value based on radium-226 and isotopic uranium 
analyses that were performed on leachate samples in lieu of gross alpha by co-
precipitation.   

• Radium-228 was detected in all samples, ranging from 2.67 pCi/L (LD#B) to 3.34 
pCi/L (LD#D). 
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• Gross beta-particle activity was detected in all samples, ranging from 222 pCi/L 
(LD#B) to 325 pCi/L (LD#D). 

• Tritium was detected in all samples, ranging from 480 pCi/L (LD#C) to 7,140 
pCi/L (LD#D). 

• Uranium (total) was detected in one sample (LD#C) at 0.41 pCi/L. 
• No radium-226 was detected. 

 
4.7  Field Quality Control Samples 
 
One field blank was prepared for each landfill included in this program.  The field blanks 
were prepared in the field using the same HDPE bottles used for radiochemical sample 
collection and laboratory-grade water supplied by STL.  The field blanks were tested for 
gross alpha/beta-particle activity.  No gross alpha/beta- particle activity was detected in 
any of the field blanks. 
 
4.8  Data Quality Issues 
 
A review of laboratory quality control sample data accompanying the radiochemical 
analyses did not reveal any significant analytical problems; additional details are 
provided in the case narratives of the CARs, presented in Appendix B.  However, an 
additional tritium analysis was performed on leachate sample LS from Altamont Landfill 
due to an anomalous tritium result.  The initial sample, collected on 8/15/02 returned a 
tritium result of 84,300 pCi/L with a re-analysis result of 85,800 pCi/L.  These results 
were considered suspect because all other Altamont Landfill leachate tritium results (four 
others in addition to LS) returned values of “not detected” at activity levels of 430 pCi/L 
or less.  All of the Altamont Landfill leachate samples were collected in close proximity to 
one another and would be expected to return similar results.  The LS sample location 
was resampled on 11/8/02 and retested for tritium, returning a value of “not detected” 
(i.e., <430 pCi/L).  No explanation of the original highly anomalous tritium values was 
apparent after consultations with the analytical laboratory and field sampling team.  All of 
the tritium results for LS are provided in Appendix B; however, only the final tritium result 
(<430 pCi/L) is presented on Table 2 and evaluated herein. 
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5.0  DISCUSSION 
 

The limited data collected for this program preclude a rigorous evaluation of the sources 
and implications of detected radionuclides in groundwater and leachate samples from 
the landfills of interest.  The factors summarized above in Section 1.3 and 2.0 limit the 
ability to draw firm conclusions.  Simple comparisons of data from upgradient monitoring 
locations to downgradient monitoring locations are not sufficient to draw any meaningful 
conclusions on potential environmental impact from the landfills, given the known 
complexities associated with spatial and temporal variability of monitoring data.  For 
example, in a radiochemical study of radon activity in groundwater, the USGS found that 
radon concentrations ranged up to 3 orders of magnitude in water from a single geologic 
unit, and differed significantly from well to well (USGS, 1998).  Furthermore, in the 
absence of sufficient background data, comparative statistics that could account for 
temporal and spatial variability based on the procedures outlined in CCR Title 27 cannot 
be performed. 
 
Comparison of the data to MCLs is also of minimal value.  Landfill leachate typically 
contains chemicals in excess of water quality standards.  For that reason, engineering 
controls are designed to contain landfill leachate, thus preventing it from being 
discharged directly into waters of the U.S.  Also, as noted in Section 2.1, MCLs are at 
levels such that a significant proportion of drinking-water supply samples are found to 
exceed MCLs.  Therefore, a more relevant evaluation may be the comparison of landfill-
related groundwater samples to public water supply samples.  Comparisons to public 
water supply samples provides some context regarding the levels of naturally-occurring 
radionuclides that may be expected, and this comparison may provide an indication of 
the presence or absence of unusual and/or potential anthropogenic sources of 
radionuclides in landfill-related groundwater samples.  The comparison to public 
drinking-water samples is considered conservative because of the generally poor water 
quality at landfills (i.e., high TDS).  As discussed in Section 2.0, elevated TDS can, in 
some cases, account for elevated radionuclide levels in groundwater.  
 
The DHS maintains a database of samples collected from public water sources in 
California and analyzed for radionuclides during the period 1984-2002.  Queries were 
performed on this database to extract relevant radiochemical data.  Table 3 presents a 
statistical summary for each radiochemical parameter of interest, based on Los Angeles 
County public water supply samples.  The following observations are presented with 
respect to the data in Table 3 as well as the alpha-particle activity threshold values used 
for this program: 
 

• Comparison of the landfill groundwater samples collected for this study (Table 2) 
to the maximum values measured in the Los Angeles County public water supply 
samples (Table 3) indicates that none of the groundwater samples analyzed for 
this program exceeded the maximum values exhibited for Los Angeles County 
public water supply samples. 

  
• 7 out of 20 groundwater samples exceeded the 5 pCi/L threshold for gross alpha-

particle activity (4 using method SMWW 7110, 2 using method 900.0, and 1 
calculated).  Gross alpha-particle activity levels in the 7 samples were generally 
similar; three samples represent non-impacted groundwater or “background” 
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samples (MWH-19 at Redwood Landfill, 4915A at Bradley Landfill, and MW-4A at 
Altamont Landfill) and four were collected from impacted or previously impacted 
wells (4916H at Bradley Landfill, E-20B and E-05 at Altamont Landfill, and MW-2 
at El Sobrante Landfill).  This indicates no correlation between gross alpha-
particle activity levels and groundwater impact (i.e., a natural alpha source is 
indicated). 

 
• Of the 7 groundwater samples exceeding the 5 pCi/L threshold for gross alpha-

particle activity, only the two samples from Redwood Landfill (MWH-8 and MWH-
19) had detectable radium-226 and/or radium-228. These samples also had 
detectable uranium, suggesting a uranium source for the radium.  In addition, a 
uranium-234/uranium-238 ratio of approximately 1.0 indicates that the uranium is 
naturally-occurring. 

 
• None of the 20 groundwater samples exceeded the 15 pCi/L threshold for gross 

alpha-particle activity. 
 

• 3 of 14 leachate samples exceeded the 5 pCi/L threshold for gross alpha-particle 
activity.  One sample is from Altamont Landfill (GWIB) and two are from the 
Kettleman Hills Facility (B181AP and B191AP).  Only sample (B181AP) exhibited 
detectable radium-226 and only sample (B191AP) exhibited detectable radium-
228. 

 
• 1 of 14 leachate samples exceeded the 15 pCi/L threshold for gross alpha-

particle activity.  This sample (B181AP at the Kettleman Hills Facility) exhibited a 
uranium-234/uranium-238 ratio of approximately 1.0, indicating that the uranium 
is naturally-occurring. 

 
Though not anomalous with respect to uranium concentrations reported for public water 
supply samples in the DHS database, the highest uranium value (9.5 pCi/L, total 
uranium in groundwater well MWH-19) measured in this study is from Redwood Landfill, 
a “bayfront” landfill located near San Francisco Bay.  This observation is consistent with 
the information noted previously that organic, marshland environments tend to 
concentrate natural uranium.  The near absence of uranium in landfill leachate from this 
landfill, as well as the uranium-234/uranium-238 ratio of 1.0 clearly supports a natural 
uranium source for well MWH-19 groundwater.  Similarly, in the other sample (leachate 
sample B181BP at Kettleman Hills) where both uranium-234 and uranium-238 were 
quantified (at a total concentration of 1.75 pCi/L), a uranium-234/uranium-238 ratio of 
approximately 1.0 ratio was measured, indicating a natural uranium source.  By 
inference, the low levels of radium-226 and/or radium-228 in these and other samples at 
both Redwood Landfill and the Kettleman Hills Facility indicate that the radium isotopes 
are likely derived from the naturally-occurring uranium. 
 
Gross beta-particle activity levels in some leachate samples appear elevated, although 
additional information on site-specific background conditions would be necessary to 
identify truly anomalous levels.  It is believed that much of the beta-particle activity 
detected in the landfill leachate samples is attributable to natural beta radiation emitting 
from disposed organic material in the landfills, particularly food wastes, with natural 
potassium-40 as the primary source.  A landfill leachate collection and recovery system 
(LCRS) is an effective containment system but, as such, will concentrate organic-rich 
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leachate containing high dissolved salts, including potassium salts.  As explained in 
Section 2.2.3, radioactivity emitting from naturally-occurring potassium is so significant 
that relatively small amounts can produce substantial beta-particle activity.  Leachate 
samples commonly contain hundreds of mg/L of natural dissolved potassium, potentially 
capable of producing hundreds of pCi/L of beta-particle activity, as described in Section 
2.2.3.   Figure 15 presents a scatter plot of dissolved potassium versus gross beta-
particle activity for the samples collected for this program.  As shown on Figure 15, a 
strong, positive statistical correlation (R2=0.78) is exhibited, with high potassium 
concentrations coinciding with high gross beta-particle activity.  
 
Tritium activity in some leachate samples are higher than what can be explained by 
contributions from natural precipitation, even in sites where waste was disposed during 
periods of atmospheric weapons testing.  This suggests an anthropogenic tritium source 
(i.e., within the landfill waste stream).  As described in Section 2.2.4, the presence of 
elevated tritium activity in leachate is well documented and has been attributed to 
general household and commercial waste containing tritium-bearing items that have 
fulfilled their useful life.  The maximum tritium value measured in leachate (22,900 pCi/L 
at El Sobrante Landfill) is below the mean leachate tritium value reported in the UK study 
(Hicks, et. al., 2000), indicating that the tritium level is not anomalous with respect to 
leachate data contained in the literature.  Elevated tritium activity measured in leachate 
samples for this study is, therefore, not regarded as unusual.  The containment of water 
in an LCRS will serve to concentrate any tritium in leachate, from both natural and 
anthropogenic sources.  
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6.0  CONCLUSIONS 
 
Landfill groundwater and leachate samples collected for this study do not appear to 
exhibit radioactivity levels of radiological significance, nor do they indicate the presence 
of the unauthorized disposal of regulated radioactive materials or waste in any of the six 
landfills examined.  Furthermore, the landfill groundwater samples do not exhibit 
particularly unusual or anomalous radioactivity levels relative to California public water 
supply samples.  Where uranium and radium isotopes were detected in groundwater and 
leachate samples, the concentrations were low and natural a uranium source is 
supported by the data. 
 
Apparently elevated levels of gross beta activity observed in some leachate samples 
appear to be related to naturally-occurring potassium-40.  As explained in this report, the 
relatively small fraction of radioactive potassium-40 that comprises natural potassium 
can produce significant levels of gross beta-particle activity in water.  Furthermore, the 
beta-particle activities measured in the leachate samples are lower than the potassium-
40-related beta-particle activities of many types of food.  It is important to note that the 
samples exhibiting the apparently elevated beta activity are all LCRS-contained leachate 
samples; no elevated beta activity was observed in groundwater samples, all of which 
exhibit relatively low concentrations of dissolved natural potassium. 
 
Apparently elevated levels of tritium activity were observed in some leachate samples.  
No tritium was detected in any groundwater samples, including from known landfill-
impacted wells.  The highest tritium value detected in leachate (22,800 pCi/L) slightly 
exceeds the MCL of 20,000 pCi/L.  However, this level of tritium activity is not 
anomalous with respect to leachate data contained in the literature and, therefore, is not 
regarded as unusual.  Studies on elevated tritium activity in landfill leachate indicate that 
the source is likely household and/or commercial disposal of tritium-containing items 
which have fulfilled their useful life, and are contained within general waste streams 
being landfilled (Robinson and Gronow, 1996). 
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