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Scales of stationary storage

Battery storage: Solar + thermal storage: Pumped Storage Hydro:
~0.05 TWh worldwide (growing fast) ~0.04 TWh worldwide ~1.6 TWh worldwide (0.25 TWh in the US)
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US natural gas storage: Potential future electricity storage needs:

“The total energy storage capacity that may need
The to be deployed to fully decarbonize the U.S.
Future of electricity sector might approach 100
terawatt-hours (TWh) by 2050.”

Energy
Storage

An Interdisciplinary MIT Study

Washington 10 facility in MI, ~25 TWh

Refs: https://www.sandia.gov/ess-ssl/ldes/ https://energy.mit.edu/wp-content/uploads/2022/05/The-Future-of-Energy-Storage.pdf
Other sources



Storage duration rises as the fraction of variable generation increases
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Albertus et al., Joule 4, 21-32, January 15, 2020. Plot based on results of groups of Denholm, Caldeira, Trancik, and others.
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New stationary storage technologies on the S curve
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New stationary storage technologies on the S curve
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Battery: Quino Energy, Inlyte,
Salient Energy, JenaBatteries

Thermal: RedoxBlox, Thermal

Demonstration Deployment

Li-ion (>95% of current sales)
Pumped storage hydro

ACES hydrogen project, Utah

Battery: Form Energy, EnerVenue,
ESS, Largo Clean Energy, Ambri, Eos,
Lockheed Martin, Urban Electric Power

Thermal: Antora, Highview, Malta
Other: Energy Vault, Quidnet, Hydrostor

/ Typically >10 years

Battery, 1414 Degrees
Other: Energy Dome
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Technological maturity




New stationary storage technologies on the S curve
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Big opportunity: stationary storage technology
that uses existing components / processes and

Li-ion (>95% of current sales)
W Pumped storage hydro

supply chains, and is decoupled from Li-ion. I ACES hydrogen project, Utah

Battery: Quino Energy, Inlyte,
Salient Energy, JenaBatteries

Thermal: RedoxBlox, Thermal

Battery, 1414 Degrees
Other: Energy Dome

——

Battery: Form Energy, EnerVenue,
ESS, Largo Clean Energy, Ambri, Eos,
Lockheed Martin, Urban Electric Power

Thermal: Antora, Highview, Malta
Other: Energy Vault, Quidnet, Hydrostor

/ Typically >10 years >

Technological maturity




Li-ion grew with large markets outside grid, and government support

Li-ion annual revenue by year
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| E\z;to | (= & ° Automotive Li-ion cells from LG
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* Multiple use cases

« DOE/SoCal Edison funded

1992

2010

Li-ion revenue figure: Yoshino, Lithium-lon Batteries, “1— Development of the Lithium-lon
Battery and Recent Technological Trends,” 2014, pp. 1-20. 7




Investment scales and timelines for new stationary storage technology

Investment in technology

A . . .
$1B |- ——mm e e e e e mmmm— - - The electricity sector poses unique
challenges for technology scaling and
ent business development. Key questions:
$100M f---=m-mmmmmmmmm oo » Support for many large (10s to 100s of
MW) demonstration projects.
$1OM === === ———- » Support for a multi-year pipeline of
deployment projects to solidify
manufacturing and business activities.
M |-=---4===
5 Spinout
Researc

Concept 10 to 15 years




Thank you

Contact: albertus@umd.edu




Technologies potentially suitable for LDES
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Early markets supported high Li-ion cell and vehicle pack prices
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Grid Li-ion had significant consumer first markets in both small cells (portable electronics) and large
packs (vehicles), and has benefited from cross-sector government subsidies (federal EV subsidies
drove down prices for grid projects).

From David L. Anderson, Masters Thesis, 2009, Link. Nykvist and Nilsson, Nature Climate Change, 5, 2015, pp. 329-332.



We do have extensive long-duration fuel storage today

Weekly Lower 48 working natural gas in underground storage (2004-2013) =

billion cubic feet (Bcf) cia’
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https://www.eia.gov/todayinenergy/detail.php?id=37512



Pumped storage deployments have essentially stopped

Selected U.S. utility-scale electric generating capacity by initial operating year
gigawatts

2 Dark blue bars: Pumped storage

Cumulative: 22 GW, ~220 GWh
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