

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Welcome to the Energy Department's "Building-Integrated Photovoltaics: Beyond the Shingle" Workshop!

Agenda Overview

9:00a - 9:10a	Introductions
9:10a - 9:30a	SETO/BTO Report G. Stefopoulos (SETO), R. Narayanamurthy (BTO)
9:30a – 10:00a	Barriers & Strategies for Integrating Architectural Solar – A U.S. Market Perspective Chris Klinga, Stan Pipkin (ASA)
10:00a - 10:15a	Break
10:15a – 11:00a	Industry Panel Discussion Moderator: Jennifer DiStefano (SETO) Panelists: Cory Fry, Veeral Hardev, Hunter McDaniel, Vaiva Razgaitis
11:00 – 11:15am	Transparent BIPV work at LBNL Jacob Jonsson (LBNL)
11:15 - 11:30am	Observations & Lessons Learned in Residential BIPV Jeff Cook (NREL)
11:30 - 11:45am	BIPV at the Solar Decathlon Rachel Romero (NREL)
11:45am-12:00pm	Closing remarks

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

Challenges and Opportunities for Building-Integrated Photovoltaics SETO/BTO Request for Information Report

Solar Energy Technologies Office / Building Technologies Office

Greenbuild International Conference and Expo U.S. DOE BIPV Workshop – November 1, 2022

Outline

- Background
- **RFI** overview
- Responses and learnings
- Workshops
- Further discussion

Background

- Building-sited distributed PV was about 30% of new solar capacity installed in 2020
- Roof-mounted systems are currently the dominant design
- Other approaches and technologies could provide a competitive value proposition for building decarbonization
 - Providing better potential given the building aspect ratio
 - Combining redundant parts
 - Reducing overall system costs
 - Improving efficiencies

Background

Building-applied PV (BAPV)		Building-integrated PV (BIPV)
Conventional PV modules		Specialized PV modules
Fully-functional building		Integral part of building
Electricity generation		Electricity generation and building function
Examples of Building-Integrated and Ancillar		lary Structure Photovoltaic Applications
	Roof Balustrade Awring Awring Window	

RFI Details

- Collaborative DOE RFI between SETO and BTO
- March 7 to April 1, 2022
- 37 responses from a variety of stakeholders
- Focus on current state of the industry, challenges and barriers, gaps, and R&D needs
- Summary report at <u>https://www.energy.gov/eere/solar/summary-</u> <u>challenges-and-opportunities-building-integrated-</u> <u>photovoltaics-rfi</u>

RFI Details – Focus areas

State of the industry and key domestic markets

Product requirements

Key barriers and perceptions

RDD&C needs and opportunities

Stakeholder engagement processes

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

Market Segments and Opportunities

Products

Roofing

- Covering/Shading Elements
- Glass products
- Vertical products

Customer Segments

- Commercial buildings
- Residential buildings
- Government, education, healthcare
- Agriculture and greenhouses

Domestic Manufacturing

- Proximity to market
- Building products typically produced close to consumption
- Cost/emission reductions

Key Product Requirements

Performance

Cost

Aesthetics

Reliability, durability, and safety

Process integration

Supply chain integration

Key Barriers and Perceptions

Technical Barriers	Costs	
	Performance	
	Aesthetic considerations	
	Technical complexity in installation, operation, and maintenance	
	Certification and permitting challenges	
Resource Shortages	Availability of products, product and supply chain reliability	
	Expertise shortage and lack of educational resources	
	Lack of sales, estimation, and other decision support tools	
	Lack of financial incentives specific to BIPV	
Awareness and collaborations	Technology awareness by designers and end-users	
	Existing silos in operating and business models of various affected groups	
	Disconnects between partnering groups and affected industries	
Research and Development	Lack of fundamental research	
	Lack of demonstration projects	
U.S. DEPARTMENT OF ENERGY	OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY	11

RDD&C Needs

Product demonstration	Testing facilities and demonstration projects
	Availability of data
Models and tools	Production cost modeling
	Energy yield modeling
	Installed system cost modeling with consideration for O&M costs
	Comprehensive assessment of benefits
Performance improvements	Improved BIPV product designs – aesthetics, installation, O&M
	Efficiency and energy yield improvements
	Thermal management improvements
	Installation and maintenance processes
	Systems integration

Stakeholder Engagement and Outreach

Underrepresented groups	Architectural community
	Construction industry
	Manufacturers and product implementation teams
	Power-electronics companies
	Trade associations and organizations
	Local/state regulators
	Investors
Outreach mechanisms	Publishing case studies
	Supporting and promoting demonstration projects
	Establishing dedicated BIPV conferences, trade shows, workshops, and other educational opportunities
	Creating a steering committee to make recommendations for specific certification standards for BIPV
	Providing funding opportunities for research and commercialization of BIPV solutions
	Instituting BIPV rebate programs or financial incentives
	Creating a coordinated national effort, like establishing a U.Sbased consortium
	Promoting early-stage innovation

Purpose of Workshop

- Bring together various BIPV stakeholders from industry, academia, and research entities
- Create a forum for discussion and exchange of views
 and ideas
- Understand the current status and needs of the industry
- Receive input that would guide future DOE plans and activities

DOE BIPV Workshops

- RE+
 - https://www.re-plus.com/power/
 - Thursday, September 22, 2022, 8:00 12:00p
- Greenbuild International Conference and Expo
 - <u>https://informaconnect.com/greenbuild/</u>
 - Tuesday, November 1, 2022, 9:00 12:00p
- Buildings XV
 - <u>https://www.ashrae.org/conferences/topical-conferences/2022-buildings-xv-conference</u>
 - Thursday, December 8, 2022, 1:00 5:00p

Questions and Further Discussion

George Stefopoulos georgios.stefopoulos@ee.doe.gov

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

US DOE BIPV Workshop - Building Technology Office

Ram Narayanamurthy, Marc LaFrance

US DOE

Advanced Technology and Energy Policy Manager Greenbuild International Conference and Expo November 1, 2022

Core functions of building envelopes

- Keep the rain out
- Keep the heat out in summer
- Keep the heat in the winter
- Maintain a view to the outdoors
- Provide safe and comfortable space
- Avoid mold, bugs and rot
- Reduce chances of condensation
- Ventilate indoor pollutants
- Avoid infiltration of outdoor pollutants and latent loads

Building envelope infrastructure example – standards and ratings

Fenestration:

- Simulation of U-factor, Solar Heat Gain Factor and Visible transmittance - ISO 15099
- U-factor testing ASTM C 1363, C1199, NFRC 102
- Solar Heat Gain Testing NFRC 201
- Spectral Optical Property ISO 9050, ASTM E903, NFRC 300. 301
- Air Leakage ASTM E283, NFRC 400 Wall Insulation
- ASTM C 518, C 177

Wall System

ASTM C1363, ASTM C1155

Air Leakage

Solar Calorimeter

Spectrophotometer

Cool Roof Rating Council ratings are determined for a fixed set of conditions, and may not be appropriate for determining sessonal energy performance. The actual effect of solar reflectance and thermal emittance on building performance may vary-

Manufacturer of product stipulates that these ratings were determined in accordance with the applicable Cool Roof Rating Council procedures.

U.S. DEPARTMENT OF ENERGY

OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

Wall systems – complex moisture and air management

BIPV needs to ensure core functions are maintained

Courtesy: Whole Building Design Guideline

Roofing conventional PV vs BIPIV

Conventional

- Shades roof from heat gain
- Allows panels to cool to produce higher output
- Not always aesthetically pleasing to some

BIPV

- Higher cell temperatures, lower output
- Increase in heat flux to attic/plenum compared to cool roofs
- Generally greater aesthetics Above Deck Ventilation – lower peak cooling

Example of BIPV with high efficiency

Key Benefits

- Highest output PV
- Cells allowed to cool
- Optimized sun angle
- Shades windows from sun

Concerns

- Aesthetically less appealing
- Window cleaning is more difficult/costly

Source: "Transition to Sustainable Buildings, Strategies and Opportunities to 2050", IEA 2013

Thermal Performance of Spandrels in Glazing Systems

200 0.80

8.3°C 7.0°C

20 30

44°C 41°C

Exterior

Temperature

-10°C

5.5%

Issues:

- Thermal-bridging of aluminum framing
- Differing construction of opaque wall areas vs. transparent areas
- Lack of consensus in thermal modeling

Needs:

- Higher performing spandrel systems to meet more stringent codes
- Thermal modeling consensus based on validation and experimentation

Outcome:

- *Design Guidance* document with best practices and recommended modeling procedures

Interior

Temperature

SPONSOR

Charles Pankow Foundation

PARTNERS

Department of Energy Lawrence Berkeley National Lab Oak Ridge National

Laboratory

ENGINEERING TEAM Morrison Hershfield RDH Building Science Simpson Gumpertz & Heger Inc.

Perovskite materials for photovoltaic windows project

Thermochromic PV

Dynamic solar heat gain control + *PV generation*

Transparent

Colored + PV

- Generates electricity and modulates solar heat gain for significant building energy savings
- Proof of concept demonstrated.
- NREL holds > 10 patents on the technology
- Durability improved
- Significant investment makes them market viable in ~5 years

Lance Wheeler, PhD NREL

Neutral color semitransparent PV

High efficiency without sacrificing aesthetics

- >6% geometric efficiency with >30 visible light transmittance and neutral gray color
- Compatible with current glazing and lamination processes
- Investment makes technology market viable in ~3 years.

National Laboratory expertise and advanced facilities

LBNL Flexlab

LBNL Goniophotometer

NREL Differential Thermal Cycling Unit

ORNL Guarded Hot Box

PNNL Lab Homes

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

Resources and contact info

US DOE – Pathway to Zero Energy Windows – Advancing Technology and Market Adoption - <u>Pathway to Zero</u> Energy Windows: Advancing Technologies and Market Adoption (nrel.gov)

US DOE - Opaque Envelopes: Pathway to Building Energy Efficiency and Demand Flexibility Key to a Low-Carbon, Sustainable Future

Opaque Envelopes: Pathway to Building Energy Efficiency and Demand Flexibility

Grid-interactive Efficient Buildings Technical Report Series Windows and Opaque Envelope Grid-interactive Efficient Buildings Technical Report Series: Windows and Opaque Envelope (energy.gov)

LBNL Core Window Lab – Primer videos and resources Outreach | Windows and Daylighting (Ibl.gov)

> Ram Narayanamurthy Emerging Technologies Program Manager US Department of Energy 1000 Independence Ave, SW Washington, DC 20585-0121 ram.narayanamurthy@ee.doe.gov

P Marc LaFrance, CEM Advanced Technology and Energy Policy Manager US Department of Energy 1000 Independence Ave, SW Washington, DC 20585-0121 <u>marc.lafrance@ee.doe.gov</u> Cell 240-474-2177

Barriers & Strategies for Integrating Architectural Solar – A U.S. Market Perspective

Christopher Klinga Architectural Solar Association

- Technical Director of the Architectural Solar Association
- Principal at SolMotiv Design.
- Past experience with Lighthouse Solar and Lumos Solar
- B.S. in Mechanical Engineering from the University of Colorado in Boulder, CO.
- NABCEP PV Installer certification
- Licensed professional engineer in Colorado and Texas.

Stan Pipkin Architectural Solar Association

- US Regional Manager of the Architectural Solar Association
- Owner of Lighthouse Solar and Pipkinc.
- Master of Architecture from the University of Texas.

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

BREAK 10:00 - 10:15am

BIPV Industry Panel Discussion

Moderator: Jennifer DiStefano Contractor to the U.S. Dept. of Energy

Veeral Hardev Ubiquitous Energy

Cory Fry Mitrex

Vaiva Razgaitis Independent Consultant (formerly at Tesla)

Hunter McDaniel UbiQD, Inc.

Transparent BIPV work at LBNL

Jacob Jonsson Lawrence Berkley National Laboratory Dr. Jacob C. Jonsson got his Ph.D. in Solid State Physics at Uppsala University and started work at Lawrence Berkeley National Laboratory in 2005. Focus on optical characterization, simulation and modelling of traditional facade materials like glass and shades, but also on electrochromics, hermochromics, and transparent PV.

Observations & Lessons Learned in Residential BIPV

Jeff Cook National Renewable Energy Laboratory

Dr. Jeffrey J. Cook is the Acting Subprogram Manager for Solar Analysis at the National Renewable Energy Laboratory and program lead for the Solar Automated Permit Processing Plus Platform. He has been on staff at NREL since 2014, and focuses on solar photovoltaics, permitting, resilience, technology cost reduction, and distributed energy resource aggregation. He received his Ph.D. in political science from Colorado State University in 2017, where he continues to instruct environmental and public policy courses. He received his Master of Science in environmental science and policy from the University of Wisconsin – Green Bay in 2012.

BIPV at the Solar Decathlon

Rachel Romero National Renewable Energy Laboratory

Rachel Romero, PE, is an energy engineer and project leader at the National Renewable Energy Laboratory. Rachel obtained her Bachelor of Science in Mechanical Engineering from Hope College and then received her master's degree in Building Systems Engineering at the University of Colorado Boulder. Rachel is an active member of ASHRAE, currently service on the Residential Buildings Committee. At NREL, Rachel is the competition manager for the U.S Department of Energy Solar Decathlon Design Challenge, which has inspired over 5000 collegiate students in 8 years to be the next generation to design net zero buildings. Also, she provides technical assistance to the to the Department of Energy's Smart Labs program, which provides technical assistance to university and national laboratory partners across the US. She was a main author of the Smart Labs Toolkit, which describes a systematic process to achieve safe, efficient, and sustainable laboratories.

Thank you! Join us at upcoming DOE BIPV events

Buildings XV Conference – December 5-8, 2022 – Clearwater Beach, FL

– DOE BIPV Workshop on Thursday, 12/8, 1-5pm

For questions about our BIPV workshop series, please reach out to George at georgios.stefopoulos@ee.doe.gov.

Learn About Upcoming Funding Opportunities

EERE Funding Opportunity Updates

Promotes the Office of Energy Efficiency and Renewable Energy's funding programs.

eere-funding-opportunities

SETO Newsletter

Highlights the key activities, events, funding opportunities, and publications that the solar program has funded.

Thank you!

George Stefopoulos

georgios.stefopoulos@ee.doe.gov

Jennifer DiStefano

jennifer.distefano@ee.doe.gov

Marc LaFrance

marc.lafrance@ee.doe.gov

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

Barriers & Strategies for Integrating Architectural Solar A US Market Perspective

Christopher Klinga, PE Technical Director, ASA

Stan Pipkin Regional Manager, ASA

November 1, 2022

Who We Are

The Architectural Solar Association (ASA) represents a growing industry with a common goal of transforming building facades and other architectural surfaces into generating assets.

ASA

- Expands Awareness
- Acts as a Supply Chain Resource
- Develops Standards

Christopher Klinga P.E. Technical Director, ASA Principal, SolMotiv Design

Stan Pipkin

US Regional Manager, ASA *Owner,* Lighthouse Solar & Pipkinc.

- Policy expertise at Solar Austin, TXSES
- **IREC** Design Award
- Product Design with Lumos Solar

• 2007-2016 - VP of Product Development Lumos • Actively consulting in architectural solar product & project development • B.S. Mechanical Engineering University of Colorado • Colorado & Texas licensed professional engineer

2007-Present, Lighthouse Solar Austin - hybrid solar EPC and architectural design firm. Principal of Pipkinc. design firm focusing on residential sustainable architecture. Masters of Architecture from the University of Texas

Learning Objectives

 Definition of Architectural Solar Architectural Integration Opportunities Market Barriers Path to Widespread Adoption

Definitions of BIPV and BAPV per EN 50583 / IEC 63092 / IEC 61730

3.3.1 Building Attached PV (BAPV) Photovoltaic modules are considered to be building attached if the PV modules are mounted on a building envelope and do not fulfil the criteria for building integrated PV 3.3.2 Building Integrated PV (BIPV)

Photovoltaic modules are considered to be building integrated if the PV modules form a building component providing additional functions as defined in 4.5 b

Building Functions: (in addition to power generation)

Mechanical rigidity or structural integrity, Primary weather impact protection: rain, snow, wind, hail, Energy economy, such as shading, daylighting, thermal insulation, Fire protection, Noise protection, Separation between indoor and outdoor environments, Security, shelter or safety

Thus, the BIPV module is a prerequisite for the integrity of the building's functionality. If the integrated PV module is dismounted, the PV module would have to be replaced by an appropriate building component.

BIPV Solar Technology with Architectural Significance

Architectural Solar

Alexand La

Architectural Solar

Solar energy generating technologies that are coordinated with the architectural design process.

Architectural Applications

Rooftop Solar

Canopies

Least Integrated

Least Integrated

Canopies

Architectural Structures

Least Integrated

Flooring (Cat. A)

Least Integrated

Awnings/Louvers(Cat.

Most Integrated

Least Integrated

Ventilated Solar Facades Rainscreens Enclosures (Cat. C)

Least Integrated

Balustrades (Cat. E)

Least Integrated

Roof Integrated (Cat. A)

Least Integrated

Sloped Glazing (Cat. B)

Least Integrated

Spandrel Glazing (Cat. D) Least Integrated

Vision Glazing (Cat. D)

Least Integrated

Architectural Solar - Advantages

Market Barriers

Lack of Continuing Education

• High soft costs

- Incompatibilities with Arch. Workflows
- Lack of Awareness
- Building Industry Adoption
- Standards Development
- Limited Supply Chain

Architectural Solar

olar

S

Rooftop

The Pull

New Construction Requirements

- Progressive Municipalities
- State Mandates

Net Zero Ambitions

Maximizing energy potential

Cost Reductions

- Modules \$0.40/watt = \$7.60/sqft*
- Installed Systems \$3.00/watt = \$57/sqft*
 *Assumes 19 watts/sqft technology

ESG

- Corporate Initiatives
- Climate Action Plans

Demand

- Market Growth
- IRA

Image courtesy of SolMotiv Design

The Path to Widespread Adoption

- Business model innovation in design workflow
- Simplified design processes and integration methodologies
- Supply chain integration
- Non-export interconnection protocols
- Embrace broad approach to integration
- A coordinated AEC community

for

Architectural Solar Education Design and Construction Professionals

ASA Educational Framework

Key Milestones

Formation of the Content Advisory Board (Quarterly Meetings)

- •(4) Publications & Accompanying Webinars sponsored by NREL
- •Free Architectural Solar Short Course (~ 10 min Video)

 - •3 modules administered via Heatspring.com

Thank you!

Christopher Klinga P.E. Technical Director, ASA chris@archsolar.org

Stan Pipkin US Regional Manager stan@archsolar.org

Architectural Solar Association 1035 Pearl St. Suite 325 Boulder, CO 80302

Images courtesy of BIPV Boost, Energy Glass, IEA, Issol, Lumos Solar, Lighthouse Solar, Morgan Creek Ventures, NRG, Onyx Solar, SolMotiv Design, Solaria, Spotlight Solar, SUPSI, Tres Birds, Walters & Wolf

Transparent BIPV work at LBNL

Jacob C. Jonsson Yuan Gao, Charlie Curcija

Windows and Envelope Material Group Building Technology and Urban Systems

ENERGY TECHNOLOGIES AREA

Strategic Collaboration: LBNL & NREL

The perfect transparent PV window

- Visible light level appropriate for the occupants
 - Number is different for skylight vs corner office vs cubicle land
- Solar heat-gain coefficient as low as possible when in cooling mode, as high as possible when in heating mode
 - Often varies between summer and winter
- U-value, lower is better
- Power output
 - As high as possible, but not VT = 0
 - In heating mode and electricity has to go to heating the room...
- Low cost and easy to install

Field testing facilities

- FLEXLAB allow testing with side-by-side comparison of technologies
- Rotating test bed to look at different orientation
- Transparent PV study in 2016 on Solaria transparent PV predicted 15% energy saving compared to low-E reference case

Field testing facilities

- MoViTT thermal and electrical performance
- Ubiquitous energy

 Thermal IR camera to show operating temperature difference

Simulation: method

- PyWinCalc (LBNL): https://github.com/LBNL-ETA/pyWinCalc
- PySAM (NREL): https://github.com/NREL/pysam
- EnergyPlus
- Improved heat transfer taking generated electricity into account

Variable names	Values
Climate	Hot, mixed, cold
Window orientation	South, East, West, North
PCE	0-1 (0.1 interval)
T_{sol}	0-1 (0.1 interval)
A_{sol}	0-1 (0.1 interval)
T_{vis}	0-1 (0.1 interval)
U factor	0.4, 0.6, 1.5, 2.7, 5.4
Daylighting control (LC)	No, Yes
$0 \leq PCE + 1$	$T_{sol} + A_{sol} \le 1$

 T_{vis} stays within the range defined by T_{sol}

Gao, Yuan, et al. Applied Energy 301 (2021): 117467.

Simulation: results

- Sun movement combined with windows results in more uniform irradiance in different orientations.
- Annual stability as well as with less light but at lower sun angles in the winter reduces the seasonal swings

Gao, Yuan, et al. *IEEE PVSC-49*, 2022.

- The visible light transmittance should fall within the balanced range that results in satisfactory clarity, low glare, and high PCE.
- The relative increase in PCE is smaller than the relative decrease in Tvis when you go down in the VT = 0.2 range

Development of self-powered dynamic window

- Current limit of dynamic windows:
- Thermochromic windows :
 - only passive control
 - not suitable for warm climates
- Electrochromic windows :
 - complexity of installation & wiring
 - limited modulation

© 2010 - 2022 Halio, Inc.

- Energy saving (high % heat rejection)
- High contrast (privacy)
- Fast switching speed
- Durability (> 500 billion cycles)
- •+ STPV \rightarrow self-powered

MEMS-based micro-shutter arrays: invisible to human eyes

Development of self-powered dynamic window

Energy saving potential of self-powered micro-shutter windows (kWh/m²/yr)

Climate	PV generation*	Control consumption**	Dynamic window saving***	Total energy saving/decarb
Hot	122.4	8.3	323.0	437.1
Mixed	101.6	7.9	194.0	287.7
Cold	108.3	8.0	269.0	369.3

Building backbone

- Long-term goal
- Synergy between
 - BIPV power generation
 - DC-power grid
 - Storage (battery or car)
 - Control/monitoring communication

Increased building integration

- Interact with IoT based smart buildings
- Grid-interactive for resilience and optimized operation
- Daylighting steering
- Area/pixel control & window display

Resiliency

- Extending the time it is safe to stay in the building during emergencies
- Complement/replacement to generators for emergency power, especially in combination with storage
- Helpful both during grid failures and planned shutdowns

Questions/comments

- How can we help enable BIPV?
- Have had impact in traditional windows
- Have experts in windows, but also DC power and battery storage, micro grids
- Ideas that Should be done vs Can be done

Observations & Lessons Learned in Residential Building Integrated Photovoltaics (BIPV)

Presenter: Jeff Cook PhD

National Renewable Energy Laboratory (NREL)

1,800

Employees, plus more than 400

early-career researchers and visiting scientists

World-class

明色

facilities, renowned technology experts

Partnerships

with industry, academia, and government

nearly **750**

Campus

operates as a living laboratory

National economic impact

\$872M annually

Project Overview

Source: GAF Timberline

NREL is partnering with roofing integrated PV manufacturers (and related installers) to analyze three research questions.

- How do current roofing integrated PV products compare to racked and mounted PV in terms of costs, install times and processes?
- How are roofing integrated PV products installed and are there opportunities for cost savings?
- What are the key barriers to expanding market opportunities for integrating solar and roofing products?

Source: Ghosh, 2020

Source: Tesla Solar Roof

BIPV Market and Potential Opportunity

BIPV Market

- Residential BIPV costs remain higher than conventional PV.
- BIPV markets are fundamentally constrained.
- Cost savings could encourage more adoption

Figure ES-1. Annual average technical potential for residential rooftop PV at time of roof replacement and new construction projected between 2017 and 2030

https://www.nrel.gov/docs/fy18osti/70748.pdf

BIPV Market Opportunity

Methodology

Expert Interviews/Advisory Group 21 re-roof and new construction obs.

Market Barriers and Potential Solutions

Cost uncertainties

Permitting, inspection, and code enforcement

Labor availability and training

Architectural and design integration

Roofing industry integration

Product Manufacturing and supply chain

Awareness and education

Conclusions/ Opportunities for Expansion

Decision Support Tools

Workforce Training

Code reform

Informational campaigns

Manufacturing and supply chains

BIPV consortium working group

Questions and Thank You!

For more information contact: <u>Jeff.cook@nrel.gov</u>

www.nrel.gov

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

BIPV at the Solar Decathlon

Rachel Romero, Senior Engineer, National Renewable Energy Laboratory

The U.S. Department of Energy Solar Decathlon is a collegiate competition, comprising **10 Contests**, that challenges student teams to **design** and **build highly efficient**, **high-performance**, **innovative**, **low-carbon buildings powered by renewable energy**.

Two Challenges, 10 Contests

3

Germany 2009

- Focus on façade
- Two-story cube
- 11.1 kW system
- 40 single-crystal silicon panels on the roof and about 250 thin-film copper indium gallium diselenide (CIGS) panels on the sides
- Expected to produce an incredible 200% of the energy needed by the house

Appalachian State University's 2011 Solar Homestead

- 833 ft² home
- Award
 - People's Choice Award
 - 2nd in Communications
 - 3rd place in Architecture

5

Appalachian State University's 2011 Solar Homestead

- Seamless integration into architectural design
- Sought for the panels not to be an "afterthought"
- Sanyo bifacial panels that collect sun from both the top and bottom of the panel
 - Yields 30% more efficiency

Swiss Team 2017 NeighborHub

- 2017 Winning Team
- Flexibility
- Shading aspect in the PV

Solar Decathlon China: Swedish 2013 HALO

- Placed 3rd overall
- Monocrystalline silicone photovoltaics laminated in thin acrylic plastic and coated with a high strength polymer
- Applied to 10 mm polycarbonate sheets

Myongji University 2022 Hanok

Thank You!

Questions? SolarDecathlon@nrel.gov

#SolarDecathlon #SolarDecathlonDesign #SolarDecathlonBuild www.solardecathlon.gov

10