Thermal Energy Storage: The Basics

Kinetic Energy: $E_K \propto \frac{1}{2}mv^2 \propto T$ Sensible

Potential Energy: $E_P \propto \frac{q_1 q_2}{r_{12}}$ Latent

Advantages & Disadvantages

Cost per unit

energy

Advantages

- It can be very cheap \$1-10/kWh-e (we think)
- 10-100x cheaper than Li-ion \$1T vs \$10T
- Similar energy density to Li-ion
- Infinite cycle life (in principle)
- Abundant materials
- May not require new manufacturing
- Physical economies of scale

Disadvantages

- Efficiency < 70%
- System/infrastructure cost
- Integration/transport challenges
- Not easily scaled down

 $10^{-6}/J = [0.5/kg] \div [2000 J/kg/K \cdot (500 K) \cdot 0.5]$

 $CPE_{min} = [\$/kg] \div [C_{p} \cdot (T_{High} - T_{low})]$

Cost of the

medium

\$3.6/kWh Carbon as an example

Energy Stored

Roundtrip

Efficiency

Medium Temperature – Cement

- 400°C in air
- Steam cycle? < 35%

- Cost? > \$7/kWh-e
- Pilot with heat discharge

11)7

- Conversion to electricity?
- Components proven in CSP
- Efficiency vs. T

Pumped Heat Storage - Salt

- Boost efficiency with heat pump (60%)
- All components are proven

- Cost? > \$30/kWh-e
- Building a commercial demo

Cryogenic Storage – Liquid Air

- Use process heat, or the atmosphere
- All components are proven

- Cost ~ \$150/kWh-e
- Building a commercial demo

High Temperature - Carbon/Silicon

Silicon at 1414°C

Graphite at 1900-2400°C Graphite at ? >1200°C

- Silicon latent heat
- Heat engine?? 60% max
- > \$4.5/kWh-e
- System cost
- Cyclic freezing?

- Graphite sensible
- Thermophotovoltaics
- Target 50%
- Liquid metal
- \$10-20/kWh-e
- Components demo'd

ANTORA

- Graphite sensible
- Thermophotovoltaics
- Target > 40%
- \$10-20/kWh-e
- No liquid metal

High Temperature – Thermochemical

- Metal + Oxygen Bonds
- 60% max
- 1500°C
- Demonstrated +1000 hrs
- Scaling up
- Cost?

BACKUP SLIDES

High Temperature – Carbon/Silicon

Electricity

Heat

Electricity

Water Cooled MPV with Integrated Mirror

Pumping

15

C. Amy et al., Nature 550, 199–203 (2017)

C. Amy et al., Energy, 233, 15, 121105 (2021)

New TPV World Record

- Thermophotovoltaic (TPV) efficiency
- TPV record was 29% for 40 years
- Record broken last year at 30%
- Our new record = 42%
- 40% = high enough to commercialize
- Plan to push to 50%

40

New World Record

42%

What will the full system look like?

Full scale system mockup: 1 GWh = 100 MW x 10 hrs of storage

