

October 27, 2022 Alex Schroeder, Chief Technology Officer Joint Office of Energy and Transportation

The future of transportation in our nation and around the world is electric.

Our nation's ability to manufacture, charge, and repair electric vehicles will help determine the health of our communities, the strength of our economy, and the sustainability of our planet.

9:16 AM · Dec 17, 2021 · Sprout Social

Innovation in Infrastructure

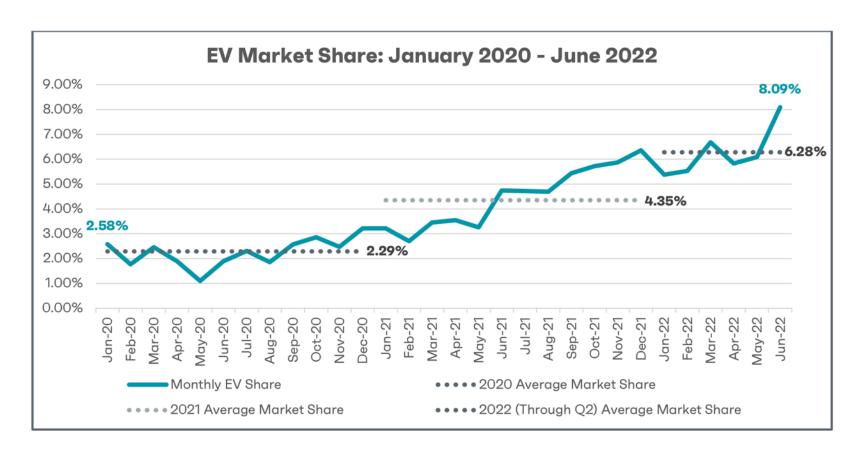
Innovation in Government

Joint Office of Energy and Transportation

Established in the Bipartisan Infrastructure Law to address areas of joint interest to the Departments of Energy and Transportation

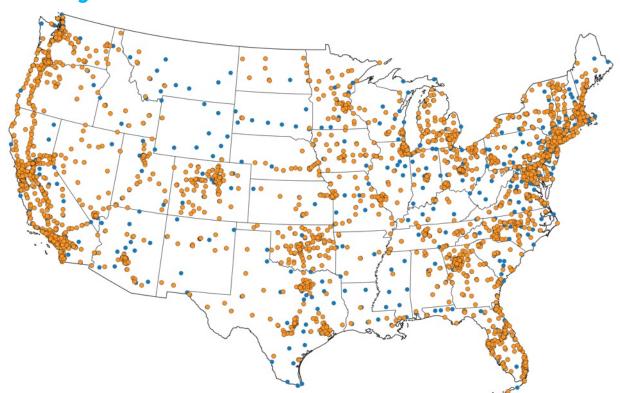
\$300M

in FY22 funds to DOT with transfer authority to DOE


9

major areas of emphasis

(1) technical assistance related to the deployment, operation, and maintenance of zero emission vehicle charging and refueling infrastructure, renewable energy generation, vehicle-to-grid integration, including microgrids, and related programs and policies; (2) data sharing of installation, maintenance, and utilization in order to continue to inform the network build out of zero emission vehicle charging and refueling infrastructure; (3) performance of a national and regionalized study of zero emission vehicle charging and refueling infrastructure needs and deployment factors, to support grants for community resilience and electric vehicle integration; (4) development and deployment of training and certification programs; (5) establishment and implementation of a program to promote renewable energy generation, storage, and grid integration, including microgrids, in transportation rights-ofway: (6) studying, planning, and funding for high-voltage distributed current infrastructure in the rights-of-way of the Interstate System and for constructing high-voltage and or medium-voltage transmission pilots in the rights-of-way of the Interstate System; (7) research, strategies, and actions under the Departments' statutory authorities to reduce transportation-related emissions and mitigate the effects of climate change; (8) development of a streamlined utility accommodations policy for high-voltage and medium-voltage transmission in the transportation right-ofway; and (9) any other issues that the Secretary of Transportation and the Secretary of Energy identify as issues of joint interest



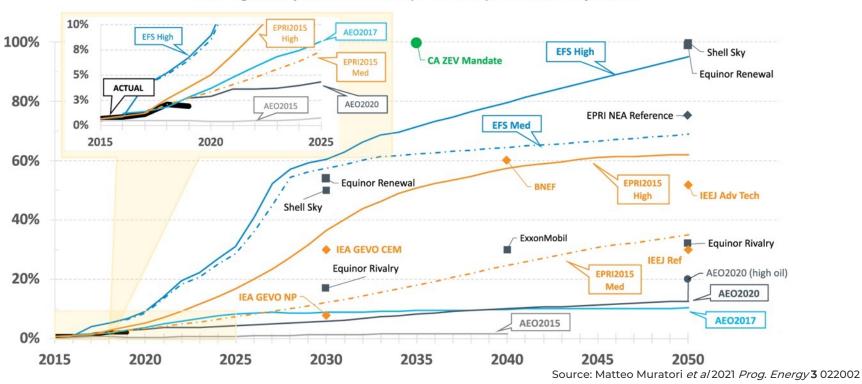
Where We Are Today

Source: Alliance of Automotive Innovation. Get Connected Electric Vehicle Quarterly Report, Q2 2022

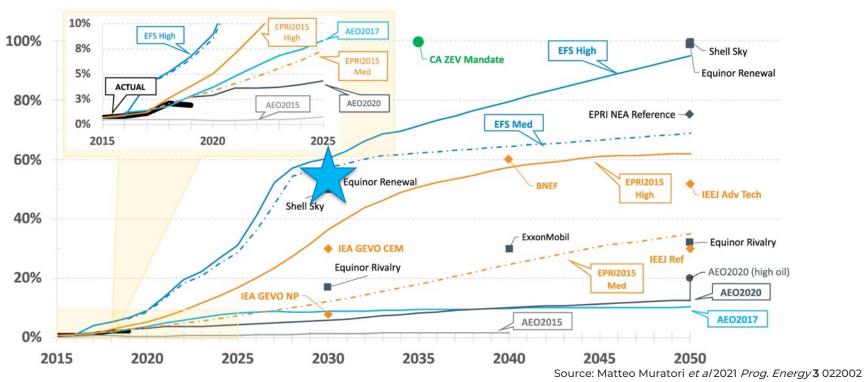
United States Public EV Charging Infrastructure May 2022

Charger Type	Current Network*		Network Growth (since Jan 2021)
	Station s	Plugs	Plugs
Public			+27%
DCFC	4,804	9,943	12770
Tesla DCFC	1,334	13,485	+43%
Total DCFC	6,138	23,428	+36%
Public L2	37,747	79,040	+25%
Tesla L2	4,436	14,677	+<1%
Total L2	42,183	93,717	+20%
Total Overall	47,304	117,145	+23%

- Public DCFC Stations
- Tesla Supercharger Stations**


Network data from the Alternative Fuels Data Center, 05/06/22 and 01/20/2021

^{**} Superchargers typically support 150-250kW per port


Where Are We Going?

New Light-Duty Electric Vehicle (BEV+PHEV) U.S. Sales Projections

Biden Administration has set a target of 50% of new light-duty sales being electric by 2030

New Light-Duty Electric Vehicle (BEV+PHEV) U.S. Sales Projections

Light-Duty Charging Infrastructure Needs

Key infrastructure needed along corridors to build confidence and in communities for convenience

Multi-pronged approach to provide affordable charging for all

Fast intercity charging for ~10% of charging*

Curbside/overnight charging ~20% of charging*

Opportunity/destination charging ~10% of charging*

Home charging ~60% of charging*

High-power charging infrastructure considerations

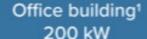
Recharging a

truck

with a

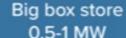
battery

minutes


will require

power delivery

Reference electrical loads



Tesla Supercharger 250 kW

Distribution substation ~20 MW

[1] 100,000 square foot

Source: J. Farrell, K. Kelly, A. Schroeder, National Renewable Energy Laboratory (2021)

What We're Doing About It

Major BIL Programs Supported by the Joint Office

National Electric Vehicle Infrastructure Formula Program (U.S. DOT)

\$5.0B

Discretionary Grant
Program for Charging
and Fueling
Infrastructure
(U.S. DOT)

\$2.5B

Low-No Emissions Grants Program for Transit (U.S. DOT)

\$5.6B

Clean School Bus Program (U.S. EPA)

\$5.0B

NEVI Formula Program Guidance

> Four 150kW DC Fast Chargers with Combined Charging System ports

EV charging **every 50 miles** along Interstate Highway System **within 1 travel mile**

Minimum station power capability at or above 600kW and supports at least 150kW per port simultaneously

Proposed Minimum Standards

-Sample provisions

Connectors, power levels, reliability

Accessibility

Interoperability

Signage

Payment, pricing

Program reporting, third-party data sharing

EVGrid Assist: Accelerating the Transition

Comprehensive VGI Technical Assistance Initiative

A new cross-DOE coordination and technical assistance effort focused on the interface between vehicle charging and the electric grid considering the full spectrum of the R&D, deploy, use, learn cycle.

Purpose:

- Increase stakeholder knowledge
- Drive actions to resolve VGI challenges and barriers
- Provide pathways for stronger VGI coordination
- Objectives: Activate the community to
- Prioritize challenges to solve
- Accelerate planning and decision making
- Enable proactive infrastructure investments and supporting markets, rates and regulations
- More quickly achieve decarbonization goals

Looking Ahead

Implementation

- Workforce development
- Community engagement
- Evolution of Joint Office technical assistance on NEVI, Low-No, and Clean School Bus Program
- AASHTO-NASEO Partnership
- DOE EV Grid Assist + continued engagement with APPA, EEI, NRECA, NARUC

Programmatic

- Finalize NEVI Rulemaking
- Discretionary Fueling and Charging Grant Program
- EV Working Group
- IRA Provisions (30C, 30D, MD/HD)

What More is Needed

Thank You

alex.schroeder@nrel.gov