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Approach involves six major steps

DEVELOP ANALYZE CALIBRATE
A SET OF SENSITIVITY BASED ON
EROSION TO INPUTS & GEOLOGIC PAST
MODELS PARAMETERS (13,000 YRS)
VALIDATE IDENTIFY PROJECT POTENTIAL

| USING BEST- FUTURE EROSION,
SECOND " | PERFORMING WITH QUANTIFIED

WATERSHED MODELS UNCERTAINTIES




Models simulate long-term erosion at
gridded locations in a drainage basin

Developed 37 process J—
models NG

Each model
Incorporates:

— Mass movement g T R

WVDP
"

— Hydrology |
— Channel/gully erosion e . A
— Material properties Nlaty o
Grid resolution is 24’




Erosion Working Group Study 1 data allow reconstruction of past
topography and downcutting history

Downcutting history at outlet

modern topography
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Input parameter ranges are informed by results
from Erosion Working Group field studies

(b)

SOURCE: S. Bennett (2017)
Report of the West Valley
Erosion Working Group
Study 2: Recent Erosion
and Deposition Processes.
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Sensitivity analysis shows low sensitivity to
downcutting history or paleo-topography

model 800 BasicRt

K, = till erodibility

K, = rock erodibility

D = soil transport efficiency
W, = contact-zone thickness
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EXAMPLE OF SENSITIVITY TO PARAMETERS, INITIAL CONDITIONS, AND LOWERING HISTORY FOR MODEL “BasicRt”



Models and parameters are tested by comparing
observed and simulated modern topography

Elevation: dem24fil_ext
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Calibration used to test and rank models
and identify best parameters

* At least two possible reasons for a poor fit:
1. Poor model
2. Great model but wrong parameter choice

 Calibration provides:
— Optimal parameter values
— Measure of goodness of fit for each model

e C(Calibration performed on CU’s Summit supercomputer
— Project overall required over 1.3 million CPU hours
— 34 of 37 successfully calibrated



cumulative_erosion__depth
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Modern
topography
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Example
Calibration:
Basic Model
(rank 25 of 34)

cumulative_erosion__depth
=1.195e+02




Observed versus modeled terrain:
Basic model

OBSERVED BASIC MODEL (rank 25 of 34)
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cumulative_erosion__depth

Calibration

51.197e+02
example #2: £
Model “BasicChRtTh” 59.827
(rank 1 of 34)
6]
-99.827
2-1.197e+02

DRAFT calibration,
to be revised.
Model BasicChRtTh.
Duration 13,000 years.



Observed versus modeled terrain:
Erosion threshold, nonlinear hillslope law, rock and till

OBSERVED BASIC MODEL
WITH EROSION THRESHOLD,
DRAFT calibration, NONLINEAR HILLSLOPE LAW,
Model BasicChRtTh. AND ROCK AND TILL UNITS

Duration 13,000 years. (rank 1 of 34) .



SUMMARY OF CALIBRATION RESULTS

sew Calibration Summary
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LOWER SCORE (VERTICAL AXIS) INDICATES A BETTER-PERFORMING MODEL 14



Models were validated by running on a
nearby watershed of similar size and relief
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Models that performed well in calibration
also performed well in validation tests

Calibration - Validation Summary

Model Type
Q Base Model
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900 ®
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Calibration — Sum of Squares Objective Function

 Top 9 models in calibration and validation selected for erosion projection
* Top-performing models distinguish between glacial sediments & bedrock



Future projections quantify
uncertainty in five main areas:

Future climate: run three alternative scenarios

Future downcutting on Buttermilk: run three alternative
scenarios

Terrain modification by humans: run ensemble of
simulations with random +/-5’ elevation perturbations

Model structure: run 9 different models

Model parameters: propagate calibration uncertainty
forward into prediction (seven models only due to
compute time limits)



Sensitivity tests examine uncertainty
from two additional sources:
* Potential for upper Franks capture by gully:
run capture-from-southeast scenario

* Potential for rapid Buttermilk widening:
run capture-from-east scenario



1970-1999

Scenarios for future climate were developed
using MACA climate-model downscaling product
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+ GCN: S;tations
* Reference Stations| ™

2070-2099

:'-'/

1000 W 1500 045  [ES 6.00 Ws.o

MILLIMETERS / YEAR WET DAYS / TOTAL DAYS MILLIMETERS / DAY

Data source: Multivariate Adaptive Constructed Analogs (MACA) Datasets 19
https://climate.northwestknowledge.net/MACA/



1350

MEAN ANNUAL PRECIPITATION

ey
[
=
=

1250

r |——RCP 4.5 {mean)

I RCP 4.5 (5-05%)

I RCP 8.5 (5-95%)

1200

Mean Precipitation (mm/yr)
o
=]

-
sy
=
o

_ RV

1050
1950

o
=~ o
T

Mean Wet Day Totals (mm/dy)
@
(=2}

2000 2050 2100

" MEAN WET-DAY PRECIPITATION

=]

1950

=
=]
P

o
=]
T

<
.
w

0.48

0.47

0.46

2000 2050 2100

- PRECIPITATION FREQUENCY

R T TS

Mean Wet Day Frequency (mm/dy)

0.45
1950

2000 2050 2100
Year
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climate
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mean wet day totals that level
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Elevation relative to modern channel (feet)

Three scenarios for future
downcutting on Buttermilk Creek
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Erosion projections plotted for 25 selected
points at site

 Time intervals of 100 years

 All model and scenario
projection runs store data for
every grid location

e Parameter uncertainty runs
focus only on the 25 points
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Dominant source(s) of uncertainty may vary
from one location to another, and through time

e Sources include:
— Unknown future climate
— Unknown future rate of lowering in surrounding areas
— Small variations or perturbations in topography
— Parameters in erosion models
— Model structure

* Side-by-side comparison of projections with two

different models illustrates model structure
uncertainty



Example of model structure uncertainty

y erosion__depth
—1.376e+02

 erosion__depth
—1.376e+02
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MODEL “BasicRt” MODEL “BasicChRtTh”
10,000-year run 10,000-year run
Lowering scenario 2 Lowering scenario 2
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Elevation

Example of uncertainty in

initial topography
(representing human

modification of landscape)
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Elevaion (ft)
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Elevation (multi-model expected value +2[7, ft)

Comparison of Three Uncertainty Quantification Methods
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Proportion of Uncertainty (-)
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9-MODEL COMPOSITE

Example of ensemble-based projected erosion maps
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Summary of uncertainty results

* Major sources of uncertainty in future erosion
estimates include:
— Initial topography / human modification of landscape
— Model structure
— Model parameters

e Other sources are:
— Climate
— Downcutting in Buttermilk valley

 Degree of uncertainty and relative importance of
different sources varies among locations

}= Model selection and calibration



Erosion modeling provides information for
further erosion assessment:

Calculations of potential future erosion at each model grid cell

Calculations include quantitative estimates of uncertainty in model
structure, future climate, initial topography, and future Buttermilk
Creek downcutting

Estimates of uncertainty arising from model parameters are
provided 7 models at 25 selected points
— Workflow and codes available to perform calculations for other models
and/or locations
Scenarios also calculated for potential capture of upper Franks
Creek by gully erosion to the southeast or Buttermilk valley
widening near Heinz Creek fan

Process model results provide basis for probabilistic modeling of
erosion using multiple alternative scenarios



QUESTIONS?



