Modeling long-term progressive erosion at the West Valley site

Erosion Working Group modeling team:

Gregory E. Tucker¹, Katherine R. Barnhart¹, Sandra G. Doty, Rachel Glade², Mary C. Hill³, Matthew Rossi¹, Charles M. Shobe¹

1 – CIRES and Department of Geological Sciences, University of Colorado, Boulder

2 – INSTAAR and Department of Geological Sciences, University of Colorado, Boulder 3 –Department of Geology, University of Kansas

West Valley Quaterly Public Meeting, February 28, 2018

Approach involves six major steps

Models simulate long-term erosion at gridded locations in a drainage basin

- Developed 37 process models
- Each model incorporates:
 - Mass movement
 - Hydrology
 - Channel/gully erosion
 - Material properties
- Grid resolution is 24'

Erosion Working Group Study 1 data allow reconstruction of past topography and downcutting history

alternative reconstructions of paleo (~13 ka) topography, with post-glacial ravines filled in

Input parameter ranges are informed by results from Erosion Working Group field studies

Soil / till erodibility

Soil infiltration capacity

SOURCE: S. Bennett (2017)
Report of the West Valley
Erosion Working Group
Study 2: Recent Erosion
and Deposition Processes.

Channel grainsize

Sensitivity analysis shows low sensitivity to downcutting history or paleo-topography

Models and parameters are tested by comparing observed and simulated modern topography

MODERN TOPOGRAPHY (CENTER) COMPARED WITH FOUR MODEL RUNS

Calibration used to test and rank models and identify best parameters

- At least two possible reasons for a poor fit:
 - Poor model
 - 2. Great model but wrong parameter choice
- Calibration provides:
 - Optimal parameter values
 - Measure of goodness of fit for each model
- Calibration performed on CU's Summit supercomputer
 - Project overall required over 1.3 million CPU hours
 - 34 of 37 successfully calibrated

Observed versus modeled terrain: Basic model

OBSERVED

BASIC MODEL (rank 25 of 34)

Observed versus modeled terrain: Erosion threshold, nonlinear hillslope law, rock and till

OBSERVED

DRAFT calibration, Model BasicChRtTh. Duration 13,000 years. BASIC MODEL
WITH EROSION THRESHOLD,
NONLINEAR HILLSLOPE LAW,
AND ROCK AND TILL UNITS
(rank 1 of 34)

SUMMARY OF CALIBRATION RESULTS

Models were validated by running on a nearby watershed of similar size and relief

Models that performed well in calibration also performed well in validation tests

- Top 9 models in calibration and validation selected for erosion projection
- Top-performing models distinguish between glacial sediments & bedrock

Future projections quantify uncertainty in five main areas:

- Future climate: run three alternative scenarios
- Future downcutting on Buttermilk: run three alternative scenarios
- Terrain modification by humans: run ensemble of simulations with random +/-5' elevation perturbations
- Model structure: run 9 different models
- Model parameters: propagate calibration uncertainty forward into prediction (seven models only due to compute time limits)

Sensitivity tests examine uncertainty from two additional sources:

- Potential for upper Franks capture by gully: run capture-from-southeast scenario
- Potential for rapid Buttermilk widening: run capture-from-east scenario

Scenarios for future climate were developed using MACA climate-model downscaling product

Three future climate scenarios

- 1. Representative Concentration Pathway (RCP) 8.5: Increase mean wet day totals to 2100, then stabilize
- 2. Representative Concentration Pathway (RCP) 4.5: Increase mean wet day totals that level off by 2100
- 3. No change in mean wet day precipitation

Three scenarios for future downcutting on Buttermilk Creek

Erosion projections plotted for 25 selected points at site

- Time intervals of 100 years
- All model and scenario projection runs store data for every grid location
- Parameter uncertainty runs focus only on the 25 points

Dominant source(s) of uncertainty may vary from one location to another, and through time

- Sources include:
 - Unknown future climate
 - Unknown future rate of lowering in surrounding areas
 - Small variations or perturbations in topography
 - Parameters in erosion models
 - Model structure
- Side-by-side comparison of projections with two different models illustrates model structure uncertainty

Example of model structure uncertainty

MODEL "BasicRt" 10,000-year run Lowering scenario 2

MODEL "BasicChRtTh" 10,000-year run Lowering scenario 2

Example of uncertainty in initial topography (representing human modification of landscape)

Example of
erosion
projections at a
point, with
uncertainty
arising from
parameter value
uncertainty

At-a-point predictions with uncertainty bounds, combining all quantified uncertainty sources

Proportion of Uncertainty Through Time GullyHead1 GullyHead2 GWPlume1 GWPlume2 ErdmanEdge 1.00 0.75 0.50 0.25 0.00 HLWT1 LFrankEdge HLWT2 Lagoon2 Lagoon3 1.00 0.75 0.50 -0.25 Source of Uncertainty 0.00 Model Selection Proportion of Uncertainty (-) NDA1 NDA2 NDA3 NDA4 NDA5 and Calibration Initial Condition 0.75 Climate Future Lowering Future 0.50 Lowering-Climate Interaction 0.25 Model-Lowering Interaction Model-Climate Interaction ProcessBLD QuarryEdge SDA1 SDA2 SDA3 Model-Lowering-Climate 1.00 Interaction 0.75 0.50 0.25 0.00 SDA4 SDA5 SDA6 UFrankEdge1 UFrankEdge2 1.00 0.75 -0.50 0.25

Relative contributions of different sources of uncertainty, by location and time

Example of ensemble-based projected erosion maps

LOWER 95% PERCENTILE

EXPECTED EROSION

UPPER 95% PERCENTILE

Summary of uncertainty results

- Major sources of uncertainty in future erosion estimates include:
 - Initial topography / human modification of landscape
 - Model structure
 - Model parameters
- = Model selection and calibration
- Other sources are:
 - Climate
 - Downcutting in Buttermilk valley
- Degree of uncertainty and relative importance of different sources varies among locations

Erosion modeling provides information for further erosion assessment:

- Calculations of potential future erosion at each model grid cell
- Calculations include quantitative estimates of uncertainty in model structure, future climate, initial topography, and future Buttermilk Creek downcutting
- Estimates of uncertainty arising from model parameters are provided 7 models at 25 selected points
 - Workflow and codes available to perform calculations for other models and/or locations
- Scenarios also calculated for potential capture of upper Franks
 Creek by gully erosion to the southeast or Buttermilk valley
 widening near Heinz Creek fan
- Process model results provide basis for probabilistic modeling of erosion using multiple alternative scenarios

QUESTIONS?