Update on Erosion Working Group (EWG) Phase 1 Studies Erosion Modeling

10 May 2017

Quarterly Public Meeting

Overview and Near-Term (2017) Goals

Develop platform for long-term process modeling of progressive erosion at the site:

- Create Erosion Modeling Suite (EMS): collection of 35 distinct erosion models and related tools and data
- Document parameter and input-data sensitivity
- Identify appropriate parameter values
- Identify subset of models that perform best when compared with data
- Validate models
- Quantify uncertainties in parameters, model structure, and geologic knowledge

Erosion model: basic framework

- Each model starts with a Digital Elevation Model (DEM) derived from LiDAR
- Two scales: Franks Creek, and smaller areas of N & S plateau
- Franks Creek:
 - Smallest watershed that both contains the site and connects to Buttermilk Valley and its geologic history
 - Represented at 24'/cell (180,068 nodes; 89,979 inside watershed)
- Selected smaller watersheds:
 - Limiting the area to ~200,000 grid nodes allows resolution of 3'/cell
 - Equivalent to ~40 acres

Basic framework (continued)

- At every grid cell, each model calculates:
 - Slope gradient
 - Area upslope that contributes water
 - Rate of erosion
 - +/- other variables, depending on model
- Update topography and iterate

Quantifying uncertainty: sources

- Model structure (a.k.a. theoretical)
- Parameters (a.k.a. estimation/experimental)
- Geologic knowledge

Model structure uncertainty

- Environmental models approximate reality
- Uncertainty arises from unknown quality of the approximations
- Approach: multi-model analysis
 - Run multiple models
 - Compare with one another and with data
 - Identify those that perform best when compared with modern topography
 - Use spread among them to quantify uncertainty
- Goal: identify model(s) sophisticated enough to be useful but simple enough to understand

Parameter estimation and uncertainty

- Sources for parameter values:
 - Erosion Working Group Studies 1 and 2
 - Prior data from site and region
 - Professional literature
 - Parameter optimization

Parameter optimization

- Tune parameters to find best possible match ("calibration")
- Provides:
 - Estimate of parameter values
 - Uncertainty quantification
 - Measure of model performance

Parameter optimization: past-to-present approach

- Reconstruct post-glacial topography
- Reconstruct downcutting history of Buttermilk valley
- Compare observed and modeled terrain

Model performance metrics

- Models are compared to LiDAR data using the following metrics:
 - Total volume loss
- Hypsometric integral
- Mean elevation
- Variance in elevation

- Mean gradient
 Variance in gradient
- Elevation quantiles Drainage area quantiles
- Spatial distribution of Chi index values
- The misfit between data and model is quantified with an objective function: weighted sum of (observed – modeled)²

Example of a best-fit model

Model validation

- Test model(s) in a different watershed without further calibration
- Provides additional measure of uncertainty

Geologic uncertainty

Sources:

- Post-glacial topography
- Downcutting history
- Underlying geology

Tests:

- Up to 6 different initial surfaces
- 3 downcutting histories
- Models with and without rock, till, and soil layers

Summary and expected outcomes for model development and analysis

- Erosion Modeling Suite (EMS)
- Input grids for site (topography and geology; modern and post-glacial)
- Selection of models based on performance
- Parameter estimates
- Validation tests
- Quantification of uncertainty associated with:
 - Model structure
 - Parameters
 - Geologic knowledge

Results provide envelopes of cumulative erosion through time that could be used in PPA

TIME -