Topic Paper #15

U.S. Woody Biomass Yields at the State and Regional Level

On August 1, 2012, The National Petroleum Council (NPC) in approving its report, *Advancing Technology for America's Transportation Future*, also approved the making available of certain materials used in the study process, including detailed, specific subject matter papers prepared or used by the study's Task Groups and/or Subgroups. These Topic Papers were working documents that were part of the analyses that led to development of the summary results presented in the report's Executive Summary and Chapters.

These Topic Papers represent the views and conclusions of the authors. The National Petroleum Council has not endorsed or approved the statements and conclusions contained in these documents, but approved the publication of these materials as part of the study process.

The NPC believes that these papers will be of interest to the readers of the report and will help them better understand the results. These materials are being made available in the interest of transparency.

Jesse Caputo, SUNY ESF Tim Volk, SUNY ESF March 2011

U.S. Woody Biomass Yields at the State and Regional Level

1.0 Short Rotation Woody Crops

The following tables include yield data for four of the most promising short rotation woody crops in the United States (willow, hybrid poplar, eucalyptus, and loblolly pine) within those regions of the country where each crop is expected to be grown. Experimental yields are reported, as well as the future potential yield in 2050 under each of two crop improvement scenarios, one in which improvements result in an average annual yield (AAY) of 2% and one in which AAY improvement is 4%. These crop improvement scenarios summarize possible yield improvements from improved culturing practices as well as from crop breeding and genetic improvements. For each crop, there are two tables – one summarizing information from trials in which neither fertilization nor irrigation were used, and one in which these more intensive practices were used. Although these four crops are currently receiving the most attention, they are certainly not the only promising woody crop species being studied (Merkle and Cunningham 2011). Citations listed below were largely summarized in two documents, Wright (2010) and Volk et al. (In Press).

Table 1: Current and predicted future yields of willow crops (*Salix* spp.) in the United States. Yield data in ODT ac⁻¹ yr⁻¹.

Region	Yield	Yield in 2050 (est.	Yield in 2050 (est.	References
		2% AAY)	4% AAY)	
Northeast (NY, QC)	3.7-7.5	5.2-10.5	9.6-19.5	a,b

^a Adegbidi, H.G., R.D. Briggs, T.A. Volk, E.H. White, and L.P. Abrahamson. 2003. Effect of organic amendments and slow-release nitrogen fertilizer on willow biomass production and soil chemical characteristics. Biomass and Bioenergy 22: 449-454.

Table 2: Current and predicted future yields of intensively managed (fertilized and/or irrigated) willow crops (*Salix* spp.) in the United States. Yield data in ODT ac⁻¹ yr⁻¹.

Region	Yield	Yield in 2050 (est.	Yield in 2050 (est.	References
		2% AAY)	4% AAY)	
Northeast (NY)	4.0-12.3	5.6-17.2	10.4-32.0	a,b,c,d

^a Adegbidi, H.G., T.A. Volk, E.H. White, L.P. Abrahamson, R.D. Briggs, and D.H. Bickelhaupt. 2001. Biomass and nutrient removal by willow clones in experimental bioenergy plantations in New York State. Biomass and Bioenergy 20:399-411.

^b Labreque, M. and T.I. Teodedorescu. 2005. Field performance and biomass production of 12 willow and poplar clones in short-rotation coppice in southern Quebec (Canada). Biomass and Bioenergy 29:1-5.

Table 3: Current and predicted future yields of hybrid poplar crops (Populus spp.) in the United States. Yield data in ODT ac⁻¹ yr⁻¹.

Region	Yield	Yield in 2050 (est.	Yield in 2050 (est.	References
		2% AAY)	4% AAY)	
Northeast (QC)	3.7-8.1	5.2-11.3	9.6-21.1	a,b,c
Midwest/central	1.8-5.1	2.5-7.1	4.7-13.3	d,e,f
(IA,KA, SD, MN, ND,				
WI)				
Pacific northwest	2.5-12.3	3.5-17.2	6.5-32.0	g,h
(WA)				

^a Bowersox, T.W. and W.W. Ward. 1976. Growth and yield of close-spaced, young hybrid poplars. Forest Science 22: 449-454.

^b Adegbidi, H.G., R.D. Briggs, T.A. Volk, E.H. White, and L.P. Abrahamson. 2003. Effect of organic amendments and slow-release nitrogen fertilizer on willow biomass production and soil chemical characteristics. Biomass and Bioenergy 22: 449-454.

^c Kopp, R.F., L.P. Abrahamson, E.H. White, K.F. Burns, and C.A. Nowak. 1997. Cutting cycle and spacing effects on biomass production by a willow clone in New York. Biomass and Bioenergy 12:313-319.

^d Kopp, R.F., L.P. Abrahamson, E.H. White, T.A. Volk, C.A. Nowak, and R.C. Fillhart. 2001. Willow biomass production during ten successive annual harvests. Biomass and Bioenergy 20: 1-7.

^b Labreque, M. and T.I. Teodedorescu. 2005. Field performance and biomass production of 12 willow and poplar clones in short-rotation coppice in southern Quebec (Canada). Biomass and Bioenergy 29:1-5.

^c Strauss, C.H., S.C. Grado, P.R. Blackenhorn, and T.W. Bowersox. 1990. Cost parameters affecting multiple rotation SRIC biomass systems. Applied Biochemistry and Biotechnology 24-25:721-733.

^d Coyle, D.R., E.R. Hart, J.D. McMillin, L.C. Rule, and R.B. Hall. 2008. Effects of repeated cottonwood leaf beetle defoliation on *Populus* growth and economic value over an 8-yr harvest rotation. Biomass and Bioenergy 225: 3365-3373.

^e Geyer, W.A. 1981. Growth, yield, and woody biomass characteristics of seven short-rotation hardwoods. Wood Science 13: 209-215.

f Netzer, D.A., D.N. Tolsted, M.E. Ostry, J.G. Isebrands, D.E. Riemenschneider, and K.T. Ward. 2002. Growth, Yield, and Disease Resistance of 7-12 Year Old Poplar Clones in the North Central United States. General Technical Report GTR-NC-229. USDA Forest Service. North Central Experiment Station, St. Paul, MN. 33 p.

^g Heilman, P.E., and X. Fu-Gaung. 1993. Influence of nitrogen on growth and productivity of short-rotation *Populus trichocarpa x Populus deltoides* hybrids. Canadian Journal of Forest Research 23:1863-1869.

^h Heilman, P.E. and D.V. Peabody, Jr. 1981. Effect of harvest cycle and spacing on productivity of black cottonwood in intensive culture. Canadian Journal of Forest Research 11: 118-123.

Table 4: Current and predicted future yields of intensively managed (fertilized and/or irrigated) hybrid poplar crops (*Populus* spp.) in the United States. Yield data in ODT ac⁻¹ yr⁻¹.

Region	Yield	Yield in 2050 (est.	Yield in 2050 (est.	References
		2% AAY)	4% AAY)	
Northeast (NY, PA)	3.7-5.8	5.2-8.1	9.6-15.1	a,b
Midwest/central	3.2-9.3	4.5-13.0	8.3-24.2	c,d,e,f,g,h,i
(MO, MN, SD, ND,				
WI, IA)				
Pacific northwest	3.2-19.4	4.5-27.2	8.3-50.4	j,k,l,m,n,o,p,q
(WA)				

^a Kopp, R.F., L.P. Abrahamson, E.H. White, K.F. Burns, and C.A. Nowak. 1997. Cutting cycle and spacing effects on biomass production by a willow clone in New York. Biomass and Bioenergy 12:313-319.

^b Strauss, C.H., S.C. Grado, P.R. Blackenhorn, and T.W. Bowersox. 1990. Cost parameters affecting multiple rotation SRIC biomass systems. Applied Biochemistry and Biotechnology 24-25:721-733.

^c Dowell, R.C., D. Gibbins, J.L. Rhoads, and S.G. Pallardy. 2009. Biomass production physiology and soil carbon dynamics in short-rotation-grown *Populus deltoides* and *P. deltoids x P. nigra* hybrids. Forest Ecology and Management 257: 134-142.

^d Netzer, D.A., D.N. Tolsted, M.E. Ostry, J.G. Isebrands, D.E. Riemenschneider, and K.T. Ward. 2002. Growth, Yield, and Disease Resistance of 7-12 Year Old Poplar Clones in the North Central United States. General Technical Report GTR-NC-229. USDA Forest Service. North Central Experiment Station, St. Paul, MN. 33 p.

^e Riemenschneider, D.E., W.E. Berguson, D.I. Dickmann, R.B. Hall, J.G. Isebrands, C.A. Mohn, G.R. Stanosz and G.A. Tuskan. 2001. Poplar breeding and testing strategies in the north-central states U.S.: demonstration of potential yield and consideration of future research needs. The Forestry Chronicle 77: 245-253.

f Strong, T.F. 1989. Rotation Length and Repeated Harvesting Influence Populus Coppice Production. USDA Forest Service. North Central Forest Experiment Station, Duluth, MN. 4 p.

^g Strong, T.F. and E.A. Hansen. 1993. Hybrid poplar spacing/productivity relations in short rotation intensive culture plantations. Biomass and Bioenergy 4: 255-261.

^h Zalesny, R.S., R.B. Hall, J.A. Zalesny, B.G. McMahon, W.E. Berguson, and G.R. Stanoz. 2009. Biomass and genotype x environment interactions of *Populus* energy crops in the Midwestern United States. Bioenergy Research 2:106-122.

¹ Zavitkovski, J., J.G. Isebrands, and D.H. Dawson. 1976. Productivity and utilization potential of short-rotation *Populus* in the Lake States. p. 392-401. In: Thieldges, B.A., and S.B. Land, Jr. (eds.). Proceedings of the Symposium on Eastern Cottonwood and Related Species. Louisiana State University, Baton Rouge, LA. ^j DeBell, D.S., G.W. Clendenen, C.A. Harrington, and J.C. Zasada. 1996. Tree growth and stand development in short-rotation *Populus* plantings: 7-year results for two clones at three spacings. Biomass and Bioenergy 11:253-269.

^k DeBell, D.S., G.W. Clendenen, and J.C. Zasada. 1993. Growing *Populus* biomass: comparison of woodgrass versus wider-spaced short-rotation systems. Biomass and Bioenergy 4:305-313.

¹Heilman, P.E. and D.V. Peabody, Jr. 1981. Effect of harvest cycle and spacing on productivity of black cottonwood in intensive culture. Canadian Journal of Forest Research 11: 118-123.

Table 5: Current and predicted future yields of eucalyptus crops (Eucalyptus spp.) in the United States. Yield data in ODT ac⁻¹ yr⁻¹.

Region	Yield	Yield in 2050 (est.	Yield in 2050 (est.	References
		2% AAY)	4% AAY)	
Southeast (FL)	2.3-11.4	3.2-16.0	6.0-29.6	a

^a Langholtz, M., D.R. Carter, D.L. Rockwood, and J.R.R. Alavalapati. 2007. The economic feasibility of reclaiming phosphate mined lands with short-rotation woody crops in Florida. Journal of Forest Economics 12: 237-249.

Table 6: Current and predicted future yields of intensively managed (fertilized and/or irrigated) eucalyptus crops (*Eucalyptus* spp.) in the United States. Yield data in ODT ac⁻¹ yr⁻¹.

Region	Yield	Yield in 2050 (est.	Yield in 2050 (est.	References
		2% AAY)	4% AAY)	
Southeast (FL)	6.4-12.4	9.0-17.4	16.6-32.2	a,b

^a Langholtz, M., D.R. Carter, D.L. Rockwood, and J.R.R. Alavalapati. 2007. The economic feasibility of reclaiming phosphate mined lands with short-rotation woody crops in Florida. Journal of Forest Economics 12: 237-249.

Table 7: Current and predicted future yields of Loblolly pine crops (*Pinus taeda*) in the United States. Yield data in ODT $ac^{-1} yr^{-1}$.

Region	Yield	Yield in 2050 (est.	Yield in 2050 (est.	References
		2% AAY)	4% AAY)	
Southeast (GA, FL)	1.5-3.8	2.1-5.3	3.9-9.9	a,b,c,d

^a Borders, B.E., R.E. Will, D. Markewitz, A. Clark, R. Hendrick, R.O. Teskey, and Y. Zhang. 2004. Effect of complete competition control and annual fertilization on stem growth and canopy relations for a chronosequence of loblolly pine plantations in the lower coastal plain of Georgia. Forest Ecology and Management 192:21-37.

^m Heilman, P.E., D.V. Peabody, Jr., D.S. DeBell, and R.F. Strand. 1972. A test of close-spaced, short-rotation culture of black cottonwood. Canadian Journal of Forest Research 2:456-459.

ⁿ Heilman, P.E., G. Ekuan, and D.B. Fogle. 1994. Above- and below-ground biomass and fine roots of four-year-old hybrids of *Populus trichocarpa x P. deltoides* and parental species in short rotation culture. Canadian Journal of Forest Research 24:1186-1192.

^o Heilman, P.E. and R.F. Stettler. 1985. Genetic variation and productivity of *Populus trichocarpa* and its hybrids. II, biomass production in a 4-year plantation. Canadian Journal of Forest Research 15:384-388.

PHeilman, P.E. and X. Fu-Gaung. 1993. Influence of nitrogen on growth and productivity of short-rotation *Populus trichocarpa x Populus deltoides* hybrids. Canadian Journal of Forest Research 23:1863-1869.

^q Weber, J.C., R.F. Stettler, and P.E. Heilman. 1985. Genetic variation and productivity of *Populus trichocarpa* and its hybrids. I, morphology and phenology of 50 native clones. Canadian Journal of Forest Research 15:376-383.

^b Rockwood, D.L., C.W. Comer, D.R. Dippon, and J.B. Huffman. 1985. Woody Biomass Production Options for Florida. Bulletin. Agricultural Experiment Station Institute of Food and Agriculture Sciences (IFAS), University of Florida, Gainsville, FL. 865 p.

^b Cobb, W.R., R.E. Will, R.F. Daniels, and M.A. Jacobson. 2008. Aboveground biomass and nitrogen in four short-rotation woody crop species growing with different water and nutrient availabilities. Forest Ecology and Management 255:4032-4039.

^c Jokela, E.J. and T.A. Martin. 2000. Effects of ontogeny and soil nutrient supply on production, allocation, and leaf area efficiency in loblolly and slash pine stands. Canadian Journal of Forestry Research 30: 1511-1524.

Table 8: Current and predicted future yields of intensively managed (fertilized and/or irrigated) Loblolly pine crops (*Pinus taeda*) in the United States. Yield data in ODT ac⁻¹ yr⁻¹.

Region	Yield	Yield in 2050 (est.	Yield in 2050 (est.	References
		2% AAY)	4% AAY)	
Southeast (GA, FL)	3.6-8.5	5.0-11.9	9.4-22.1	a,b,c,d,e

^a Borders, B.E., R.E. Will, D. Markewitz, A. Clark, R. Hendrick, R.O. Teskey, and Y. Zhang. 2004. Effect of complete competition control and annual fertilization on stem growth and canopy relations for a chronosequence of loblolly pine plantations in the lower coastal plain of Georgia. Forest Ecology and Management 192:21-37.

Addition Citations:

- Merkle, S. and M. Cunningham. 2011. Southern hardwood varietal forestry: a new approach to short-rotation woody crops for biomass energy. Journal of Forestry 109(1):7-14.
- Wright, L. 2010. US Woody Crop Yield Summary 2010. Woody Crop Yield Tables For SRWCOWG meeting attendees. October 17-19, 2010. DRAFT.
- Volk, T.A., M.A. Buford, B. Berguson, J.Caputo, J.Eaton, J.H. Perdue, T.G. Rials, D. Riemenschneider, B. Stanton, and J.A. Stanturf. (in press). Woody Feedstocks Management and Regional Differences. In: Sustainable Alternative Feedstock Opportunities, Challenges and Roadmap for 6 U.S. Regions. Soil and Water Conservation Society.

^d Williams, T.M. and C.A. Gresham. 2006. Biomass accumulation in rapidly growing loblolly pine and sweetgum. Biomass and Bioenergy 30:370-377.

^b Cobb, W.R., R.E. Will, R.F. Daniels, and M.A. Jacobson. 2008. Aboveground biomass and nitrogen in four short-rotation woody crop species growing with different water and nutrient availabilities. Forest Ecology and Management 255:4032-4039.

^c Ruth, B.E., E.J. Jokela, T.A. Martin, D.A. Huber, and T.L. White. 2007. Genotype x environment interactions in selected loblolly and slash pine plantations in the Southeastern United States. Forest Ecology and Management 238:175-188.

^d Samuelson, L.J., J. Butnor, C. Maier, T.A. Stokes, K. Johnsen, and M. Kane. 2008. Growth and physiology of loblolly pine in response to long-term resource management: defining growth potential in the southern United States. Canadian Journal of Forest Research 38:721-732.

^e Williams, T.M. and C.A. Gresham. 2006. Biomass accumulation in rapidly growing loblolly pine and sweetgum. Biomass and Bioenergy 30:370-377.

Biomass from Forest Management

Forest management activities in the United States have the potential to yield significant quantities of biomass for use in energy production. The bulk of forest biomass is expected to come from two sources, logging residues and removals of poor growing stock, low-value trees, and trees from overstocked forest stands. Logging residues consist of tops, limbs, and other non-merchantable material generated during harvesting activities. Although it is important to leave some of this material on site to provide wildlife habitat, and to maintain soil productivity and ecosystem function, it is estimated that up to 70% of material can be safely removed (Minnesota Forest Resources Council 2007, Evans and Perschel 2009). Potential for additional removals can be estimated by subtracting the annual rate of removals from the annual net growth (growth - mortality) within a region. The remainder is an estimate of the amount of additional wood volume being added to the forest inventory each year, a portion of which can be removed for use in energy applications. Table 1 below summarizes the annual quantity of logging residues estimated to be available on a sustainable basis in each state, as well as current annual removals, current net-growth, and potential net growth under optimal silvicultural practices based on site productivity. Data were derived from two sources; estimates of annual residues were calculated by the National Renewable Energy Laboratory (NREL, Milbrandt 2005) and estimates of net-growth and removals were tabulated by Shifley (2006). Data were originally collected by the U.S. Forest Service. Millebrandt (2005) includes residues from both land clearing and forestry activities, whereas data in Shifley (2006) pertain to forestry alone. Table 2 summarizes the annual availability of woody biomass in each state under each of four scenarios. Each scenario includes the total quantity of logging residues, plus either 70% or 100% of either the current or potential net annual growth (minus current removals). The scenarios in which only 70% of net annual growth is utilized for biomass would be possible even in the event that timber removals increase from current rates. Should removals decrease in the future (a trend consistent with the recent past), more biomass would be available under all four scenarios.

Table 1: Current net forest growth, potential net forest growth, current logging removals, and annual availability of logging residues in each of the 50 U.S. states. Volume to mass conversions done using the ratio of 50 cubic feet of wood per ODT (approximately 1.4 cubic meters per tonne). Data in thousand ODT yr⁻¹

State	Net growth	Potential net	Annual removals	Annual availability
		growth		of logging residues
AK	4140	10980	2840	738
AL	29200	43120	25980	2555
AR	17920	31240	15920	2874
AZ	2480	3100	280	59
CA	26500	33780	12680	1303
СО	5820	10580	420	70
CT	1100	1820	240	78
DE	320	440	160	51
FL	13700	18840	11200	1778
GA	30380	36420	28960	3556
HI	20	1920	0	0
IA	820	2880	500	359
ID	12700	27300	5060	873
IL	3440	7000	1380	664

IN					
KY 7680 16140 5520 2055 LA 16680 30260 19180 3384 MA 1940 3400 320 89 MD 2140 3180 820 263 ME 8040 18680 8840 2890 MI 15120 25800 6320 1275 MN 7400 18220 6320 2242 MO 4780 14440 3360 1840 MS 22100 40900 23000 3825 MT 11660 21760 3360 704 NC 23200 29040 19160 2995 ND 140 400 20 27 NE 280 1080 200 72 NH 3400 4780 2800 986 NJ 1100 1860 220 29 NM 2800 3900 380 71 <	IN	4480	8220	1940	863
LA 16680 30260 19180 3384 MA 1940 3400 320 89 MD 2140 3180 820 263 ME 8040 18680 8840 2890 MI 15120 25800 6320 1275 MN 7400 18220 6320 2242 MO 4780 14440 3360 1840 MS 22100 40900 23000 3825 MT 11660 21760 3360 704 NC 23200 29040 19160 2995 ND 140 400 20 27 NE 280 1080 200 72 NH 3400 4780 2800 986 NJ 1100 1860 220 29 NM 2800 3900 380 71 NV 120 420 20 5 NY <td>KS</td> <td>520</td> <td>1880</td> <td>140</td> <td>134</td>	KS	520	1880	140	134
MA 1940 3400 320 89 MD 2140 3180 820 263 ME 8040 18680 8840 2890 MI 15120 25800 6320 1275 MN 7400 18220 6320 2242 MO 4780 14440 3360 1840 MS 22100 40900 23000 3825 MT 11660 21760 3360 704 NC 23200 29040 19160 2995 ND 140 400 20 27 NE 280 1080 200 72 NB 280 1080 200 72 NH 3400 4780 2800 986 NJ 1100 1860 220 29 NM 2800 3900 380 71 NV 120 420 20 5 NY	KY	7680	16140	5520	2055
MD 2140 3180 820 263 ME 8040 18680 8840 2890 MI 15120 25800 6320 1275 MN 7400 18220 6320 2242 MO 4780 14440 3360 1840 MS 22100 40900 23000 3825 MT 11660 21760 3360 704 NC 23200 29040 19160 2995 ND 140 400 20 27 NE 280 1080 200 72 NH 3400 4780 2800 986 NJ 1100 1860 220 29 NM 2800 3900 380 71 NV 120 420 20 5 NY 11800 16980 2820 1111 OH 5860 7820 2020 796 OK </td <td>LA</td> <td>16680</td> <td>30260</td> <td>19180</td> <td>3384</td>	LA	16680	30260	19180	3384
ME 8040 18680 8840 2890 MI 15120 25800 6320 1275 MN 7400 18220 6320 2242 MO 4780 14440 3360 1840 MS 22100 40900 23000 3825 MT 11660 21760 3360 704 NC 23200 29040 19160 2995 ND 140 400 20 27 NE 280 1080 200 72 NH 3400 4780 2800 986 NJ 1100 1860 220 29 NM 2800 3900 380 71 NV 120 420 20 5 NY 11800 16980 2820 1111 OH 5860 7820 2020 796 OK 4860 7480 2660 655 OR<	MA	1940	3400	320	89
MI 15120 25800 6320 1275 MN 7400 18220 6320 2242 MO 4780 14440 3360 1840 MS 22100 40900 23000 3825 MT 11660 21760 3360 704 NC 23200 29040 19160 2995 ND 140 400 20 27 NE 280 1080 200 72 NH 3400 4780 2800 986 NJ 1100 1860 220 29 NM 2800 3900 380 71 NV 120 420 20 5 NY 11800 16980 2820 1111 OH 5860 7820 2020 796 OK 4860 7480 2660 655 OR 34560 48620 17260 1041 P	MD	2140	3180	820	263
MN 7400 18220 6320 2242 MO 4780 14440 3360 1840 MS 22100 40900 23000 3825 MT 11660 21760 3360 704 NC 23200 29040 19160 2995 ND 140 400 20 27 NE 280 1080 200 72 NH 3400 4780 2800 986 NJ 1100 1860 220 29 NM 2800 3900 380 71 NV 120 420 20 5 NY 11800 16980 2820 1111 OH 5860 7820 2020 796 OK 4860 7480 2660 655 OR 34560 48620 17260 1041 PA 12600 16980 4320 1679 R	ME	8040	18680	8840	2890
MO 4780 14440 3360 1840 MS 22100 40900 23000 3825 MT 11660 21760 3360 704 NC 23200 29040 19160 2995 ND 140 400 20 27 NE 280 1080 200 72 NH 3400 4780 2800 986 NJ 1100 1860 220 29 NM 2800 3900 380 71 NV 120 420 20 5 NY 11800 16980 2820 1111 OH 5860 7820 2020 796 OK 4860 7480 2660 655 OR 34560 48620 17260 1041 PA 12600 16980 4320 1679 RI 160 360 40 8 SC	MI	15120	25800	6320	1275
MS 22100 40900 23000 3825 MT 11660 21760 3360 704 NC 23200 29040 19160 2995 ND 140 400 20 27 NE 280 1080 200 72 NH 3400 4780 2800 986 NJ 1100 1860 220 29 NM 2800 3900 380 71 NV 120 420 20 5 NY 11800 16980 2820 1111 OH 5860 7820 2020 796 OK 4860 7480 2660 655 OR 34560 48620 17260 1041 PA 12600 16980 4320 1679 RI 160 360 40 8 SC 18900 18520 13660 1733 SD	MN	7400	18220	6320	2242
MT 11660 21760 3360 704 NC 23200 29040 19160 2995 ND 140 400 20 27 NE 280 1080 200 72 NH 3400 4780 2800 986 NJ 1100 1860 220 29 NM 2800 3900 380 71 NV 120 420 20 5 NY 11800 16980 2820 1111 OH 5860 7820 2020 796 OK 4860 7480 2660 655 OR 34560 48620 17260 1041 PA 12600 16980 4320 1679 RI 160 360 40 8 SC 18900 18520 13660 1733 SD 800 1240 420 125 TN	MO	4780	14440	3360	1840
NC 23200 29040 19160 2995 ND 140 400 20 27 NE 280 1080 200 72 NH 3400 4780 2800 986 NJ 1100 1860 220 29 NM 2800 3900 380 71 NV 120 420 20 5 NY 11800 16980 2820 1111 OH 5860 7820 2020 796 OK 4860 7480 2660 655 OR 34560 48620 17260 1041 PA 12600 16980 4320 1679 RI 160 360 40 8 SC 18900 18520 13660 1733 SD 800 1240 420 125 TN 14760 23840 7680 1319 TX	MS	22100	40900	23000	3825
ND 140 400 20 27 NE 280 1080 200 72 NH 3400 4780 2800 986 NJ 1100 1860 220 29 NM 2800 3900 380 71 NV 120 420 20 5 NY 11800 16980 2820 1111 OH 5860 7820 2020 796 OK 4860 7480 2660 655 OR 34560 48620 17260 1041 PA 12600 16980 4320 1679 RI 160 360 40 8 SC 18900 18520 13660 1733 SD 800 1240 420 125 TN 14760 23840 7680 1319 TX 14100 23960 15400 2060 UT	MT	11660	21760	3360	704
NE 280 1080 200 72 NH 3400 4780 2800 986 NJ 1100 1860 220 29 NM 2800 3900 380 71 NV 120 420 20 5 NY 11800 16980 2820 1111 OH 5860 7820 2020 796 OK 4860 7480 2660 655 OR 34560 48620 17260 1041 PA 12600 16980 4320 1679 RI 160 360 40 8 SC 18900 18520 13660 1733 SD 800 1240 420 125 TN 14760 23840 7680 1319 TX 14100 23960 15400 2060 UT 1540 4460 160 30 VA	NC	23200	29040	19160	2995
NH 3400 4780 2800 986 NJ 1100 1860 220 29 NM 2800 3900 380 71 NV 120 420 20 5 NY 11800 16980 2820 1111 OH 5860 7820 2020 796 OK 4860 7480 2660 655 OR 34560 48620 17260 1041 PA 12600 16980 4320 1679 RI 160 360 40 8 SC 18900 18520 13660 1733 SD 800 1240 420 125 TN 14760 23840 7680 1319 TX 14100 23960 15400 2060 UT 1540 4460 160 30 VA 16960 22400 13100 2403 VT	ND	140	400	20	
NJ 1100 1860 220 29 NM 2800 3900 380 71 NV 120 420 20 5 NY 11800 16980 2820 1111 OH 5860 7820 2020 796 OK 4860 7480 2660 655 OR 34560 48620 17260 1041 PA 12600 16980 4320 1679 RI 160 360 40 8 SC 18900 18520 13660 1733 SD 800 1240 420 125 TN 14760 23840 7680 1319 TX 14100 23960 15400 2060 UT 1540 4460 160 30 VA 16960 22400 13100 2403 VT 3800 4700 1540 496 WA	NE	280	1080	200	72
NM 2800 3900 380 71 NV 120 420 20 5 NY 11800 16980 2820 1111 OH 5860 7820 2020 796 OK 4860 7480 2660 655 OR 34560 48620 17260 1041 PA 12600 16980 4320 1679 RI 160 360 40 8 SC 18900 18520 13660 1733 SD 800 1240 420 125 TN 14760 23840 7680 1319 TX 14100 23960 15400 2060 UT 1540 4460 160 30 VA 16960 22400 13100 2403 VT 3800 4700 1540 496 WA 28520 38100 17340 1034	NH	3400	4780	2800	986
NV 120 420 20 5 NY 11800 16980 2820 1111 OH 5860 7820 2020 796 OK 4860 7480 2660 655 OR 34560 48620 17260 1041 PA 12600 16980 4320 1679 RI 160 360 40 8 SC 18900 18520 13660 1733 SD 800 1240 420 125 TN 14760 23840 7680 1319 TX 14100 23960 15400 2060 UT 1540 4460 160 30 VA 16960 22400 13100 2403 VT 3800 4700 1540 496 WA 28520 38100 17340 1034 WI 9780 22940 6940 2011	NJ	1100	1860	220	29
NY 11800 16980 2820 1111 OH 5860 7820 2020 796 OK 4860 7480 2660 655 OR 34560 48620 17260 1041 PA 12600 16980 4320 1679 RI 160 360 40 8 SC 18900 18520 13660 1733 SD 800 1240 420 125 TN 14760 23840 7680 1319 TX 14100 23960 15400 2060 UT 1540 4460 160 30 VA 16960 22400 13100 2403 VT 3800 4700 1540 496 WA 28520 38100 17340 1034 WI 9780 22940 6940 2011 WV 10200 16420 3340 1347 <td>NM</td> <td>2800</td> <td>3900</td> <td>380</td> <td>I .</td>	NM	2800	3900	380	I .
OH 5860 7820 2020 796 OK 4860 7480 2660 655 OR 34560 48620 17260 1041 PA 12600 16980 4320 1679 RI 160 360 40 8 SC 18900 18520 13660 1733 SD 800 1240 420 125 TN 14760 23840 7680 1319 TX 14100 23960 15400 2060 UT 1540 4460 160 30 VA 16960 22400 13100 2403 VT 3800 4700 1540 496 WA 28520 38100 17340 1034 WI 9780 22940 6940 2011 WV 10200 16420 3340 1347	NV	120	420	20	5
OK 4860 7480 2660 655 OR 34560 48620 17260 1041 PA 12600 16980 4320 1679 RI 160 360 40 8 SC 18900 18520 13660 1733 SD 800 1240 420 125 TN 14760 23840 7680 1319 TX 14100 23960 15400 2060 UT 1540 4460 160 30 VA 16960 22400 13100 2403 VT 3800 4700 1540 496 WA 28520 38100 17340 1034 WI 9780 22940 6940 2011 WV 10200 16420 3340 1347	NY	11800	16980	2820	1111
OR 34560 48620 17260 1041 PA 12600 16980 4320 1679 RI 160 360 40 8 SC 18900 18520 13660 1733 SD 800 1240 420 125 TN 14760 23840 7680 1319 TX 14100 23960 15400 2060 UT 1540 4460 160 30 VA 16960 22400 13100 2403 VT 3800 4700 1540 496 WA 28520 38100 17340 1034 WI 9780 22940 6940 2011 WV 10200 16420 3340 1347	OH	5860	7820	2020	
PA 12600 16980 4320 1679 RI 160 360 40 8 SC 18900 18520 13660 1733 SD 800 1240 420 125 TN 14760 23840 7680 1319 TX 14100 23960 15400 2060 UT 1540 4460 160 30 VA 16960 22400 13100 2403 VT 3800 4700 1540 496 WA 28520 38100 17340 1034 WI 9780 22940 6940 2011 WV 10200 16420 3340 1347					
RI 160 360 40 8 SC 18900 18520 13660 1733 SD 800 1240 420 125 TN 14760 23840 7680 1319 TX 14100 23960 15400 2060 UT 1540 4460 160 30 VA 16960 22400 13100 2403 VT 3800 4700 1540 496 WA 28520 38100 17340 1034 WI 9780 22940 6940 2011 WV 10200 16420 3340 1347	OR		48620		
SC 18900 18520 13660 1733 SD 800 1240 420 125 TN 14760 23840 7680 1319 TX 14100 23960 15400 2060 UT 1540 4460 160 30 VA 16960 22400 13100 2403 VT 3800 4700 1540 496 WA 28520 38100 17340 1034 WI 9780 22940 6940 2011 WV 10200 16420 3340 1347			16980	4320	I .
SD 800 1240 420 125 TN 14760 23840 7680 1319 TX 14100 23960 15400 2060 UT 1540 4460 160 30 VA 16960 22400 13100 2403 VT 3800 4700 1540 496 WA 28520 38100 17340 1034 WI 9780 22940 6940 2011 WV 10200 16420 3340 1347					
TN 14760 23840 7680 1319 TX 14100 23960 15400 2060 UT 1540 4460 160 30 VA 16960 22400 13100 2403 VT 3800 4700 1540 496 WA 28520 38100 17340 1034 WI 9780 22940 6940 2011 WV 10200 16420 3340 1347					I .
TX 14100 23960 15400 2060 UT 1540 4460 160 30 VA 16960 22400 13100 2403 VT 3800 4700 1540 496 WA 28520 38100 17340 1034 WI 9780 22940 6940 2011 WV 10200 16420 3340 1347					
UT 1540 4460 160 30 VA 16960 22400 13100 2403 VT 3800 4700 1540 496 WA 28520 38100 17340 1034 WI 9780 22940 6940 2011 WV 10200 16420 3340 1347					
VA 16960 22400 13100 2403 VT 3800 4700 1540 496 WA 28520 38100 17340 1034 WI 9780 22940 6940 2011 WV 10200 16420 3340 1347					I .
VT 3800 4700 1540 496 WA 28520 38100 17340 1034 WI 9780 22940 6940 2011 WV 10200 16420 3340 1347					
WA 28520 38100 17340 1034 WI 9780 22940 6940 2011 WV 10200 16420 3340 1347					
WI 9780 22940 6940 2011 WV 10200 16420 3340 1347					
WV 10200 16420 3340 1347					
					I .
WY 2380 4920 280 58	WY	2380	4920	280	58

Table 2: Annual availability of woody biomass from forests in each of the 50 U.S. states under four growth and removal scenarios. Volume to mass conversions done using the ratio of 50 cubic feet of wood per ODT (approximately 1.4 cubic meters per tonne). Data in thousand ODT yr⁻¹.

State	Scenario A ¹	Scenario B ²	Scenario C ³	Scenario D⁴
AK	1648	2038	6436	8878
AL	4809	5775	14553	19695
AR	4274	4874	13598	18194
AZ	1599	2259	2033	2879
CA	10977	15123	16073	22403
СО	3850	5470	7182	10230
CT	680	938	1184	1658

DE	163	211	247	331
DE	3528	4278	7126	9418
FL	4550	4976	8778	11016
GA	14	20	1344	1920
HI	583	679	2025	2739
IA	6221	8513	16441	23113
ID	2106	2724	4598	6284
IL	2641	3403	5259	7143
IN	400	514	1352	1874
KS	3567	4215	9489	12675
KY	1634	884	11140	14464
LA				
MA	1223	1709	2245	3169
MD	1187	1583	1915	2623
ME	2330	2090	9778	12730
MI	7435	10075	14911	20755
MN	2998	3322	10572	14142
MO	2834	3260	9596	12920
MS	3195	2925	16355	21725
MT	6514	9004	13584	19104
NC	5823	7035	9911	12875
ND	111	147	293	407
NE	128	152	688	952
NH	1406	1586	2372	2966
NJ	645	909	1177	1669
NM	1765	2491	2535	3591
NV	75	105	285	405
NY	7397	10091	11023	15271
ОН	3484	4636	4856	6596
OK	2195	2855	4029	5475
OR	13151	18341	22993	32401
PA	7475	9959	10541	14339
RI	92	128	232	328
SC	5401	6973	5135	6593
SD	391	505	699	945
TN	6275	8399	12631	17479
TX	1150	760	8052	10620
UT	996	1410	3040	4330
VA	5105	6263	8913	11703
VT	2078	2756	2708	3656
WA	8860	12214	15566	21794
WI	3999	4851	13211	18011
WV	6149	8207	10503	14427
WY	1528	2158	3306	4698

¹logging residues + 70%*(current net growth – removals)

Additional Citations:

Evans, A.M. and R.T. Perschel. 2009. An assessment of biomass harvesting guidelines. Forest Guild. 20 p.

Milbrandt, A. 2005. A geographic perspective on the current biomass resource availability in the United States. Technical Report NREL/TP-560-39181. U.S. Department of Energy, National Renewable Energy Laboratory (NREL). 62 p.

Minnesota Forest Resources Council. 2007. Biomass Harvesting on Forest Management Sites. In: Sustaining Minnesota Forest Resources: Voluntary Site-Level Forest Management Guidelines for Landowners, Loggers, and Resource Managers. 42 p.

Shifley, S.R. 2006. Sustainable forestry in the balance. Journal of Forestry 104(4):187-195.

² logging residues + 100%*(current net growth – removals)

³ logging residues + 70%*(potential net growth – removals)

⁴ logging residues + 100%*(potential net growth – removals)