

Potential for carbon accrual in bioenergy feedstock fields

KIRSTEN HOFMOCKEL

Soil Microbiome Scientist PNNL

DOE' workshop on Bioenergy's Role in Soil Carbon Storage March 28–29, 2022

Soil organic carbon storage and loss is massive

- SOM contains more C than the atmosphere and vegetation combined
- Over 110 Pg of carbon have been lost from surface soil
- This is roughly equivalent to 80 years' worth of present-day U.S. emissions

Soil C sequestration is part of the climate solution

- Soil is a sink for 2500 Gt of C
- Plants provide new C inputs to soils
- 24-60% of SOM of microbial origin (Deng and Liang 2022)

Naylor et al. 2020 ARER

Soil microbes contribute to C sequestration

Jansson & Hofmockel. Nature Microbiology Reviews. 2019

Pacific Northwest

Mineral associations regulate C persistence

- Accrual of CO₂ relies on microbial metabolism of plant inputs
- Necromass sequestration depends on organomineral complexes
- Opportunity to optimize microbial metabolism and necromass

How do plant-microbe-mineral interactions influence soil C sequestration?

- Are certain microbes more influential in producing biomass/necromass?
- Do bioenergy cropping systems favor C accumulation?
- What is the influence of the soil habitat on microbial necromass retention?

Great Lakes Bioenergy Research Center (GLBRC)

Kellogg Biological Station (KBS) in Michigan Sandy Loam Arlington Agricultural Research Station (AARS) in Wisconsin Silt Loam

Sampled 5 field replicates of switchgrass and corn at each site in 2017 (9 years after establishment)

Kasanke et al. 2021 GCBB

Pacific Northwest

Mortierella highly prevalent across systems

Filamentous saprotrophs noted for industrial arachidonic acid production and rock phosphate solubilization

arachidonic acid

		Dominant ITS OTUs										
	Silty Switchgrass					Sandy Switchgrass						
★	OTU	ID	Similarity	Rel. Abund. (Mean \pm Stdev)	OTU	ID	Similarity	Rel. Abund. (Mean \pm Stdev)				
	4	Mortierella hyaline	100%	$11.9\pm14.5\%$	19	Mortierella exigua	100%	$17.0 \pm 12.5\%$				
	1	Morterela sp.	99%	$11.1 \pm 3.6\%$	12	Mortierella beljakovae	94%	$7.4 \pm 12.5\%$				
	151	Mortierella camargensis	98%	$6.3 \pm 2.5\%$	22	Mortierella beljakovae	95%	$5.3\pm8.0\%$				
•	16	Heydinia alpine	100%	$5.6 \pm 11.0\%$	17	Phallus rugulosus	98%	$4.2\pm9.3\%$				
	10	Mortierella sp.	100%	$4.2 \pm 1.5\%$	14	Mortierella elongata	100%	4.1 ± 4.5				
	Silty Corn				Sandy Corn							
	1	Mortierella sp.	99%	$7.1\pm4.4\%$	14	Mortierella elongata	100%	$15.1 \pm 16.1\%$				
	151	Mortierella camargensis	98%	$6.4\pm6.7\%$	19	Mortierella exigua	100%	$9.0\pm 6.0\%$				
	21	Solicoccozama terreus	100%	$5.0\pm2.5\%$	10	Mortierella sp.	100%	$8.5 \pm 17.9\%$				
	4	Mortierella hyaline	100%	$4.4\pm5.0\%$	16	Heydinia alpine	100%	$3.8\pm5.1\%$				
	16	Heydinia alpine	100%	$4.2\pm3.6\%$	84	Exophiala pisciphila	96%	$3.6 \pm 1.3\%$				

Biotic and Abiotic Effects on Soil Organic C

WEOC: Site $r^2 = 0.09$ Crop $r^2 = 0.18$

Pacific

CHCl₃: Site $r^2 = 0.28$ Crop $r^2 = ns$

FTICR-MS data from small aggregates

Kasanke et al 2021 GCBB

Greatest necromass accumulation in LMAOM

Pacific Northwest

After 8 years, no significant change in C or N accrual

		%	5C	%N		
		2 year *	8 year	2 year *	8 year	
Sand	Corn	1.23 ± 0.09	1.18 ± 0.38	0.11 ± 0.01	0.09 ± 0.04	
Sanu	Switchgrass	1.21 ± 0.07	0.92 ± 0.13	0.09 ± 0.01	0.10 ± 0.01	
C:It	Corn	2.61 ± 0.12	2.17 ± 0.31	0.27 ± 0.02	0.20 ± 0.03	
SIIL	Switchgrass	2.30 ± 0.11	2.22 ± 0.37	0.23 ± 0.02	0.22 ± 0.03	

Increased EEA in SWG soils may offset the proposed carbon sequestration benefits of using switchgrass instead of corn as a biofuel crop

13

Concluding remarks

- Plant-microbe interactions strongly influence bioavailable carbon
- Edaphic properties regulate the sink capacity
- Greatest accumulation of microbial-derived necromass was in light mineral associated organic matter fraction that is enriched in high concentrations of amorphous iron-bearing minerals
- Need to consider mass balance of entire system, including hydrologic transport to deep soil horizons

Thank You

Kirsten Hofmockel Chris Kasanke Qian Zhao Sarah Leichty Allison Thompson Montana Smith Trinidad Alfaro Jim Moran Nick Huggett Tom Wietsma Andrew Lipton Alice Dohnalkova Ravi Kukkadapu

GREAT LAKES BIOENERGY

Sarah Roley Lawrence Oates Gregg Sandford Randy Jackson Phil Robertson

This research was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research program under award *FWP* 68292, and EMSL Exploratory Research Project 51095

SOIL ECOLOGY SOCIETY 2022 Biennial Meeting

May 17 - 19

