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The world’s agricultural
soils have lost at least
487 gigatons of CO,
(equivalent)

SOC loss (Mg C/ha™1)
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(Can we put it back?)
In the USA alone, an estimated 0.5 - 1 Gt/yr could be sequestered

Sanderman et al. PNAS 2017



National analysis: Soil C solutions scorecard
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CARBON NEGATIVE BY 2030

€0, removal options for an early corporate buyer

Removal Measurability | Removal vs. Risk of
Class Subclass of carbon avoided unaccounted Additionality Leakage risk Durability
storage emissions GHG emissions
Cover cropping %k %k % %k % %k k k% % %k %k
Deep-rooted perennials ok o,k kK * kK o B
Soil Tillage reduction * ok ** * ** **
Organic amendments * ok * e © * %
Grazing management * ok * ** g ok
Cover crop rate > 5% .
. L . L Less than 10
* low * avoided only * high risk * relatively low * high risk
years
**intermediate  ** mixed ** medium risk  ** intermediate  ** medium risk ~ ** 10 - 100 years
: *** removal : . : : \
*** high S0 *** low risk  *** relatively high *** low risk **%*1000's of years

Figure 3-6. Counties where the rate of cover eropping exeeeds 5%. These counties were excluded from our capacity
estimates because they exceeded the 5% additionality threshold.

Schmidt et al., Carbon Negative by 2030: CO, removal options for an early corporate buyer, 2022



Deep roots—an excellent way to put carbon in the ground

— Deep root C appears to persist

— Grasslands have significantly higher soil C Allsites, R = 0.49

residence time than forests/croplands

Root-OC input prop.

.. . ] . Shoot-OC input prop.
— “maximizing root biomass input = most

straightforward way to increase soil C stocks”
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Terrer et al., Nature, 2021 Poeplau et al., Global Change Biology, 2021
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Isotope tracing shows the fate & persistence
of fresh plant inputs
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— Root exudate carbon became mineral-associated very quickly

— After 2 years, 23% of initial C input remained, but the total C
pool size stayed the same

Fossum et al., Soil Bio & Biochem 2022



Shallow-Rooted ( ) Deep-Rooted
Annuals Perennials
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Sher et al. Soil Bio & Biochem, 2020
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Slessarev et al. GCB Bioenergy, 2020




@ Field site
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Less -> More Weathered Soil

Slessarev et al. in prep.
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200 pm
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Neurath et al. ES&T, 2021; Whitman et al. Env. Microbiology, 2018




If we could
solls, that

Where to park the carbon?
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Objective 3:
Integrate with
global change
scenarios

Objective 2:
Measure and
model reactive
minerals

Objective 1:

Develop model
linking mineral
budget and pH
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Mineralogical C capacity in practice

186 soil profiles and model-predicted

values across Europe Global synthesis of C accrual studies from 103 soil profiles
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* By managing plant exudates, we can also manage
the root microbiome

* Plant exudates also affect broader ecosystem
processes—e.g. accumulation of soil C
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Microbiome services
to the plant

Plant nutrient acquisistion:

- Nitrogen fixation

- Phosphate solubilization

- Production of siderophores

- Enhanced mobilization of
nutrients from soil minerals

- Mineralization of organic
matter

Defense against pathogens:
- Production of antimicrobials
- Competition for nutrients
- Predation on plant pathogens
- Interference with quorum
sensing affecting virulence
- Induced systemic resistance

Drought and salinity stress:
- Production of ACC deaminase
- Secretion of osmolytes
- Production of plant hormones
- Release of antioxidants

Zhalnina et al. 2021 Phytobiomes



Arbuscular mycorrhizal fungi

—provide significant amount of plant N, P & water
--can ‘rescue’ rhizo-biome during water stress
—~transport plant-fixed C outside the root zone
-key mechanism leading to organic matter-
mineral interactions

Density in soil Global Mean

Total hyphae (cm cm3)

102,000
(100-1,255,400)

AMF only (cm cm3) 2,000

(100-15,000)

Fine roots (cm cm3)* 6.8

See et al. Global Change Biology 2022
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Opportunities:

* Deep rooted plants, particularly perennials, can have a net positive
impact on SOC — engineer for deep, robust root systems

 We need to measure the geographic patterns of biophysical
constraints and mineral capacity — include dynamic minerology in
our SOC models

* Rhizodeposits (extracellular polysaccharides, “EPS”) play an
Important role in promoting soil aggregation/carbon persistence —
engineer for EPS production

* Beneficial fungi transport N, P and water to the plant host, and
fungal hyphae transport C to mineral surfaces — select for
enhanced mycorrhizal symbioses
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