

Virginia L. Jin^{1*}, Catherine E. Stewart², Marty R. Schmer¹, Aaron J. Sindelar^{1,3}, Brian J. Wienhold¹ (*retired*)

¹USDA-ARS Agroecosystem Management Research, Lincoln, NE ²USDA-ARS Soil Management and Sugarbeet Research, Fort Collins, CO ³Central Valley Ag Coop, Malcolm, NE

*Correspondence: Virginia.Jin@usda.gov

USDOE-BETO Bioenergy's Role in Soil Carbon Storage Workshop Monday, March 28, 2022

Using Management to Ameliorate Stover Removal

A Closer Look: Stover Harvesting Practices

USDA-ARS Research Questions & Approach

- What are the impacts of corn stover removal on crops and soils?
 - Agronomic metrics: Grain yield
 - Soil sustainability metrics: Soil organic carbon (SOC), Non-CO₂ gases (N₂O)
 - Soil health metrics: physical, chemical, biological properties (not presented)
- How do these impacts differ between intensive production systems vs marginally productive systems?
 - No-till vs tilled systems
 - Continuous monocropping vs crop rotations
 - Irrigated vs rainfed/dryland systems

USDA-ARS REAP Project (early 2000s to mid-2010s)

Resilient Economic

- Sun Grant Regional Partnership: USDA-ARS, NIFA, USDOE-BETO, Universities, Industry partners
- 36 field sites across US; standard design, protocols

• Led to \$9M DOE-BETO Landscape Design Project (2015-2021)

Does No-Till Mitigate Stover Removal Impacts?

SDA United States Department of Agriculture Agricultural Research Service

How Long Does It Take for Soil Changes to Occur?

Annual vs Perennial Feedstocks on Marginal Lands

Stover Harvest Guidelines

- <u>></u> 180 bushels/ac for adequate organic matter return and soil cover
- Target removing < 2 tons/ac, alternating yrs
- Target slopes < 4% to limit erosion risk
- Minimize stalk removal to limit erosion risk

Stover Harvest Guidelines – Amelioration Practices

- Recommended practices to use with stover removal
 - No-till or other reduced tillage soil management practice, PLUS
 - Winter cover crop and/or manure to replace harvested stover, AND/OR
 - Periodic soil testing (SOM, pH, N, P, K, S) to evaluate soil status
- Efficacy of amelioration management depends on initial soil status, time
 - In the cross-site irrigated studies, all sites LOST SOC despite long-term no-till use
 → No-till alone does not fully offset the impacts of removing crop residue.
 → Adding a cover crops/animal manure further offsets, but still not completely.
 - In the marginally productive farmland study, all treatments GAINED SOC
 - → Poor initial soil status responded positively to all conservation management, regardless whether feedstock system was annual row-crop or perennial grass.

Acknowledgements

Many thanks to our agency, university, & industry collaborators.

Special thanks to the multitude of ARS support scientists, technicians, and student workers across the REAP Regional Partnership locations.

Funding through USDA-ARS as part of the USDA-ARS-REAP project.

Additional funding through the North Central Regional Sun Grant Center, South Dakota State University through USDOE – Office of Biomass Programs award number DE-FC36-05GO85041.

