

#### Hydrogen: Novel Liquefiers for Novel Molecules

DOE/NASA Joint Liquid Hydrogen Workshop February 22<sup>nd</sup>, 2022



Cool. Fuel.

Jacob Leachman, Ph.D. Associate Professor & HYPER Lab Director School of Mechanical & Materials Engineering

WASHINGTON STATE

#### In this talk:

- $H_2$  fundamentals.
- Liquefaction basics.
- 3. Emerging concepts.

#### 2030 Vision: 5 T/day, modular, dispatchable



- Efficient, low-cost, 5 Tonne/day liquefier enables:
  - Daily tanker fills,
  - Direct tanker loading,
  - Rapid tanker swapping,
  - Fits in a rocket stage,
  - Fits down the interstate,
  - Fits down an assembly line,
  - Fits in the column of a 14 MW off-shore electrolyzing wind turbine,
  - Modular+dispatchable to ramp with renewables, and
  - Opportunity to be scaled down (~500 W @ 20 K) for active cooling and zero-boil-off storage.
- Bigger only seems to get better beyond this for rotary machinery and storage spheres, not electrolyzers or transport. (Study opportunity!)
- Technology advances have always proceeded rapid capacity expansions. We will not meet our goals without fundamental technology advances.



НҮРЕІ



# 1. $H_2$ fundamentals.

- 1. Novel hydrogen physics: quantum swelling
- 2. Novel hydrogen physics: nuclear spin isomers
- 3. Ideal-gas property effects

#### 1.1 Novel $H_2$ Physics: Quantum Swelling

- In 1929, Louis de Broglie won the Nobel Prize: "for his discovery of the wave nature of electrons." <sup>(Nobelprize.org)</sup>
- He, H2, Ne are a small enough momentum to allow wavelengths much larger than the average distance between molecular interactions.





Η

Y

Ρ

Ε

R

HYPER







## 2. Liquefaction Basics.

- 1. Hydrogen liquefier efficiencies
- 2. Fundamentals of refrigeration
- 3. Opportunities: change the input
- 4. Opportunities: change the entropy
- 5. Opportunities: change the enthalpy
- 6. Opportunities: change the output

#### 2.1 Hydrogen liquefier efficiencies

• 1<sup>st</sup> Law Efficiency

 $COP_I = \frac{What you paid}{What you want}$ 

- Spending electric exergy to obtain 1 kg of LH2 so units become kW-hr/kg.
- Also known as specific energy consumption (SEC)
- Legacy H2 liquefiers have SEC ~ 13 kW-hr/kg.
- Current H2 liquefiers targeting 9-10 kW-hr/kg.

Carnot (ideal) Efficiency

 $COP_C = \frac{T_C}{(T_H - T_C)}$ 

• 2<sup>nd</sup> Law (exergetic) Efficiency

$$COP_{II} = \frac{Best \ you \ could've}{How \ you \ did} = \frac{COP_{O}}{COP_{II}}$$

• LH2  $\text{COP}_{\text{II}} = 3.92/13 = 29.7 \%$ 

<sup>t</sup> Under development in 1974

106

 $10^{4}$ 

• LH2: COP<sub>C</sub> = 21/(300-21) = 0.075 or 3.92 kW-hr/kg

"] "

0.01



 $10^{2}$ 

 $\dot{Q}_L(W)$ 





#### 2.2 Fundamentals of refrigeration

- 1. Warm H2 in T=298 K P= 1 atm 75% ortho
  - 2. Remove entropy via heat transfer

- 3. Remove enthalpyvia work transfer(usually mechanical or electrical work)
- 4. Cold H2 out T=20 K P= 1.5 atm 0% ortho

- Only four ways to change the thermodynamic cycle for hydrogen liquefaction:
  - 1. Change the input exergy
  - 2. Change the heat transfer through entropy
  - 3. Change the work transfer
  - 4. Change the output exergy

Flow Exergy:  $\varphi = (h - h_0) - T_0(s - s_0)$ 4428 16921 kJ/kg kJ/kg Entropy contribution to exergy is 4x the enthalpy.



HYPEB



H Y P E R

HYPER

### 2.4 Opportunities: change the entropy

Warm H2 in T=298 K P= 1 atm 75% ortho

• New materials are being created that allow for changes in entropy at constant temperature (phase change). Ability to control phase change, and phase change size are what controls the efficacy.

|                                                 | Remove entropy<br>via heat transfer<br>Remove enthalpy via<br>work transfer<br>(usually mechanical<br>or electrical work) | Endothermic<br>Phase Change | Driving Force to<br>Cause Change | Ordered Phase      | Disordered<br>Phase |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------|--------------------|---------------------|
| Cold H2 out<br>T=20 K<br>P= 1.5 atm<br>0% ortho |                                                                                                                           | Fluid                       | Pressure                         | Liquid             | Gas                 |
|                                                 |                                                                                                                           | Fluid                       | Pressure                         | Solid              | Liquid              |
|                                                 |                                                                                                                           | Chemical                    | Chem. potential                  | Strong solution    | Dilute solution     |
|                                                 |                                                                                                                           | Chemical                    | Chem. potential                  | Precipitate        | Uniform solution    |
|                                                 |                                                                                                                           | Chemical                    | Surface tension                  | Bulk liquid        | Surface film        |
|                                                 |                                                                                                                           | Chemical/Physical           | Sorption                         | (Ad/Ab)sorbed      | Desorbed            |
|                                                 |                                                                                                                           | Physical                    | Magnetic field                   | Anti-ferromagnet   | Paramagnet          |
|                                                 |                                                                                                                           | Physical                    | Magnetic field                   | Superconductor     | Normal material     |
|                                                 |                                                                                                                           | Physical                    | Electric field                   | Anti-ferroelectric | Paraelectric        |
|                                                 |                                                                                                                           | Physical                    | Many                             | Ordered crystal    | Disordered crystal  |
|                                                 |                                                                                                                           | Physical                    | Unknown                          | Rotational order   | Molecular rotation  |

HYPE

11

### 2.5 Opportunities: change the enthalpy

Warm H2 in T=298 K P= 1 atm 75% ortho

- Cryogenic compressors and piston-expanders can improve the transfer of Pdv work. Requires novel seal and bearing designs for cryogenic hydrogen.
- Non-Pdv types are typically controlled by Arrhenius (thermal) diffusion which is multiple orders of magnitude slower at cryogenic temperatures. Quantum effects are an opportunity around this.
- Remove entropy via heat transfer

Remove enthalpy via work transfer (usually mechanical or electrical work)

Cold H2 out T=20 K P= 1.5 atm 0% ortho

| Work Transfer Type   | Gradient Type      | Device Type           |
|----------------------|--------------------|-----------------------|
| Mechanical/Shaft     | Pdv/Momentum       | Turbomachinery        |
| Mechanical/Shaft     | Pdv                | Piston/Impeller       |
| Oscillatory pressure | Pdv                | Linear driver         |
| Oscillatory pressure | Pdv                | Acoustic speaker      |
| J-T expansion        | Pdv                | Throttle              |
| Electrical           | Voltage            | Diode                 |
| Electrical           | Temperature        | Thermoelectric diode  |
| Electrical           | Chemical Potential | Fuel Cell/Electrolyze |
| Induction            | Magnetic field     | Electric coil         |



Η

Ρ

Ε

R

HYPEE

#### 2.6 Opportunities: change the output

Warm H2 in T=298 K P= 1 atm

75% ortho

- Decrease the exergy of the hydrogen flowing out of the cycle via lower output exergy (higher temperature & pressure), and no o-p conversion (but with losses).
- The latent heat of vaporization, which controls liquid stability during transport, is 9% less at 25 K, 35% less at 30 K, 0 when supercritical. Ultimately more volatile.

via heat transfer Mass of liquid hydrogen 0.75 Remove enthalpy via 0.5 work transfer (usually mechanical or electrical work) 0.25 Cold H2 out T=20 KP=1.5 atm0% ortho 0

Remove entropy





Η

Y

Ρ

Ε

R

HYPER



## 3. Emerging Concepts.

- 1. Quantum plumbing
- 2. Ortho-parahydrogen catalyzed regeneration
- 3. Cryogenic hydrogen diodes



### 3.1 Quantum plumbing

- The most challenging extreme of liquefaction occurs below 77 K when quantum effects begin to dominate over classical.
- Nanotube & film arrays are tunable over sensitive length-scales for cryogenic hydrogen.
- Orthohydrogen preferentially adsorbs on surfaces and can be separated creating opportunities for quantum sieving or tunneling assisted catalysis.
- Hydrogen quantum swelling could allow sieving of smaller molecules like neon for use in active dilution refrigeration cycles.
- Nanoscale check valves could improve pressure control.





 $\overline{15}$ 



Η

Y

#### 3.2 Ortho-para catalyzed regeneration

- Regenerative cycles (stirling, acoustic, pulse/GM, & magneto-caloric) tend to improve in performance (10-27%) when helium is swapped for hydrogen. (see Dros & Loftus).
- Regenerators & catalyst beds both require high surface areas, yet have never been combined.
- Regenerator scale up is challenging due to large azimuthal temperature gradients resulting in instabilities and stack by-pass. Ortho-parahydrogen conversion could counter-act stack by-pass by creating localized exotherms.
- Soundspeed differences between ortho- & para- could promote para- migration towards cold.



Ε

R

HYPEB

16



Scott Beckman.

- Quantized ortho-parahydrogen conversion is an opportunity for tunable phase change below 77 K.
- O-P catalysts should have high magnetic susceptibility <77 K, high surface area, and an internal energy transition matched to the conversion energy.
- P/N junction diode tuned to 15 meV turns o-p conversion heat into useful electricity.
- Reduces amount of exothermic heat lift required from any cycle  $(o \rightarrow p)$  or can drive endothermic conversion for cycle cooling  $(p \rightarrow 0)$ .
- Reduced thermal noise in cryogenics could allow higher diode efficiencies.
- In worst case could be simple ortho-parahydrogen composition sensor.

4. In Summary.

- 1. We need many 5 T/day, efficient, low-cost liquefiers, and fast.
- 2. Cryogenic hydrogen liquefier concepts have not addressed this need, let alone advanced, in 50 years.
- 3. Hydrogen has unique quantum opportunities for liquefiers.
- 4. Several quantum concepts have the potential to advance nearly all LH2 cycles; but more fundamental research is needed, now.



#### H Y P E R

Please, follow along, reach out, or visit for a tour: https://hydrogen.wsu.edu/; Jacob.Leachman@wsu.edu; @hydrogenprof

Thank You!

