
 
    

  

 

 

    
  

  
     

     

Hydrogen: 
Novel Liquefiers for Novel Molecules 

DOE/NASA Joint Liquid Hydrogen Workshop 
February 22nd, 2022 

Jacob Leachman, Ph.D. 
Associate Professor & HYPER Lab Director 

In this talk: 
School of Mechanical & Materials Engineering 

1. H2 fundamentals. 

2. Liquefaction basics. 

3. Emerging concepts. 
Cool. Fuel. 



     

 

 

  

  

     
 

 

  
    

      
     

   
   

   

     2 2030 Vision: 5 T/day, modular, dispatchable 

• Efficient, low-cost, 5 Tonne/day liquefier enables: 
 Daily tanker fills, 

 Direct tanker loading, 

 Rapid tanker swapping, 

 Fits in a rocket stage, 

 Fits down the interstate, 

 Fits down an assembly line, H 
 Fits in the column of a 14 MW off-shore electrolyzing 

wind turbine, Y 
 Modular+dispatchable to ramp with renewables, and P 
 Opportunity to be scaled down (~500 W @ 20 K) for 

active cooling and zero-boil-off storage. E 
• Bigger only seems to get better beyond this for R 

rotary machinery and storage spheres, not 
electrolyzers or transport. (Study opportunity!) 

• Technology advances have always proceeded 
rapid capacity expansions. We will not meet our 
goals without fundamental technology advances. Chart by Carl Bunge 2021, WSU 
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1. H2 fundamentals. 
H 
Y 
P1. Novel hydrogen physics: quantum swelling 
E 

2. Novel hydrogen physics: nuclear spin isomers 
R 

3. Ideal-gas property effects 



    

           
   

           
     

4 
1.1 Novel H2 Physics: Quantum Swelling 

• In 1929, Louis de Broglie won the Nobel Prize: “for his discovery of the 
wave nature of electrons.” (Nobelprize.org) 

• He, H2, Ne are a small enough momentum to allow wavelengths much 
larger than the average distance between molecular interactions. 
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5 1.2 Novel H2 Physics: Nuclear-Spin Isomers 
In 1932, Werner Heisenberg won the Nobel Prize: 

“for the creation of quantum mechanics, the 

application of which has, inter alia, led to the 

discovery of the allotropic forms of hydrogen.” 
1Nobelprize.org accessed 2010 

Normal 

Hydrogen 

3:1 

Orthohydrogen Parahydrogen 
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6 1.3 Ortho-para effects on properties: Enthalpy 
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Latent heat of 

vaporization 

6 

~50 K temperature swing if isolated and fully converted 
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2. Liquefaction Basics. 
H 
Y 

1. Hydrogen liquefier efficiencies P 
2. Fundamentals of refrigeration E 

R3. Opportunities: change the input 

4. Opportunities: change the entropy 

5. Opportunities: change the enthalpy 

6. Opportunities: change the output 



8 2.1 Hydrogen liquefier efficiencies 

• Carnot (ideal) Efficiency • 2nd Law (exergetic) Efficiency 

𝑇𝐶 𝐵𝑒𝑠𝑡 𝑦𝑜𝑢 𝑐𝑜𝑢𝑙𝑑′𝑣𝑒 𝐶𝑂𝑃𝐶 
𝐶𝑂𝑃𝐶 = 𝐶𝑂𝑃𝐼𝐼 = = 

𝐻𝑜𝑤 𝑦𝑜𝑢 𝑑𝑖𝑑 

• LH2: COPC = 21/(300-21) = • LH2 COPII = 3.92/13 = 29.7 % H0.075 or 3.92 kW-hr/kg 

Y 
P 
E 
R 

• 1st Law Efficiency 

𝑊ℎ𝑎𝑡 𝑦𝑜𝑢 𝑝𝑎𝑖𝑑 
𝐶𝑂𝑃𝐼 = 

𝑊ℎ𝑎𝑡 𝑦𝑜𝑢 𝑤𝑎𝑛𝑡 

• Spending electric exergy to 
obtain 1 kg of LH2 so units 
become kW-hr/kg. 

• Also known as specific 
energy consumption (SEC) 

• Legacy H2 liquefiers have 
SEC ~ 13 kW-hr/kg. 

• Current H2 liquefiers 
targeting 9-10 kW-hr/kg. 

𝑇𝐻 − 𝑇𝐶 

Strobridge, NBS Report 655, 1974 

   

    
    

    
  

   
   

  
 

  
   

 

   

𝐶𝑂𝑃𝐼 

https://nvlpubs.nist.gov/nistpubs/Legacy/TN/nbstechnicalnote655.pdf


   

 

 

 

 

 

 

      

  

  

  

 

9 2.2 Fundamentals of refrigeration 
1. Warm H2 in 

T=298 K 

P= 1 atm 

75% ortho 

2. Remove entropy 

via heat transfer 

3. Remove enthalpy 

via work transfer 

(usually mechanical 

or electrical work) 

4. Cold H2 out 

T=20 K 

P= 1.5 atm 

0% ortho 

• Only four ways to change the thermodynamic cycle 
for hydrogen liquefaction: 

1. Change the input exergy 

2. Change the heat transfer through entropy 

3. Change the work transfer 

4. Change the output exergy 

Flow Exergy: 𝜑 = ℎ − ℎ0 − 𝑇0 𝑠 − 𝑠0 

4428 16921 
kJ/kg kJ/kg 

Entropy contribution to 

exergy is 4x the enthalpy. 

H 
Y 
P 
E 
R 



    

 

 

 

 

      
     

10 2.3 Opportunities: change the input 
Warm H2 in 

T=298 K 

P= 1 atm 

75% ortho 

• Increasing the exergy of the hydrogen flowing into the cycle via electrochemical 
compression, radiative cooling, or o-p separation can significantly reduce the SEC. 

Remove entropy 
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Remove entropy 

via heat transfer 

work transfer 

(usually mechanical 

or electrical work) 

Cold H2 out 

T=20 K 

P= 1.5 atm 

0% ortho 

2.4 Opportunities: change the entropy 
Warm H2 in 

• New materials are being created that allow for changes in entropy at 
T=298 K 

constant temperature (phase change). Ability to control phase change, and 
P= 1 atm 

phase change size are what controls the efficacy. 
75% ortho 

H 
YFluid Pressure Solid Liquid 

Chemical Chem. potential Strong solution Dilute solution P 
Chemical Chem. potential Precipitate Uniform solution 

Remove enthalpy via E 
Chemical Surface tension Bulk liquid Surface film 

RChemical/Physical Sorption (Ad/Ab)sorbed Desorbed 

Physical Magnetic field Anti-ferromagnet Paramagnet 

Physical Magnetic field Superconductor Normal material 

Physical Electric field Anti-ferroelectric Paraelectric 

Physical Many Ordered crystal Disordered crystal 

Physical Unknown Rotational order Molecular rotation 

Endothermic Driving Force to Ordered Phase Disordered 

Phase Change Cause Change Phase 

Fluid Pressure Liquid Gas 
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Cold H2 out 

T=20 K 

P= 1.5 atm 

0% ortho 

2.5 Opportunities: change the enthalpy 
Warm H2 in • Cryogenic compressors and piston-expanders can improve the transfer of Pdv 

T=298 K work. Requires novel seal and bearing designs for cryogenic hydrogen. 

P= 1 atm 
• Non-Pdv types are typically controlled by Arrhenius (thermal) diffusion which is 

75% ortho 
multiple orders of magnitude slower at cryogenic temperatures. Quantum 
effects are an opportunity around this. 

Remove entropy H
via heat transfer 

Work Transfer Type Gradient Type Device Type 

Mechanical/Shaft Pdv/Momentum Turbomachinery 
Y 
PMechanical/Shaft Pdv 

Throttle 
or electrical work) 

Piston/Impeller 

Remove enthalpy via Oscillatory pressure Pdv Linear driver E 
work transfer Oscillatory pressure Pdv Acoustic speaker R(usually mechanical J-T expansion Pdv 

Electrical Voltage Diode 

Electrical Temperature Thermoelectric diode 

Electrical Chemical Potential Fuel Cell/Electrolyzer 

Induction Magnetic field Electric coil 



    

 

 

 

 

       
      

      
           

13 2.6 Opportunities: change the output 
Warm H2 in • Decrease the exergy of the hydrogen flowing out of the cycle via lower output 

T=298 K exergy (higher temperature & pressure), and no o-p conversion (but with losses). 
P= 1 atm 
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Half of liquid lost due to natural conversion in 2 days.

H 

• The latent heat of vaporization, which controls liquid stability during transport, is 75% ortho 
9% less at 25 K, 35% less at 30 K, 0 when supercritical. Ultimately more volatile. 

Remove entropy 

via heat transfer 

Y 
P 

Remove enthalpy via E 
work transfer 

R(usually mechanical 

or electrical work) 

Cold H2 out 

T=20 K 

P= 1.5 atm 

0% ortho 
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3. Emerging Concepts. 
H 
Y 
P 

1. Quantum plumbing 
E 

2. Ortho-parahydrogen catalyzed regeneration R 
3. Cryogenic hydrogen diodes 



  

    
      

 

     
   

  
     

    

     
     

 

     

15 3.1 Quantum plumbing 

• The most challenging extreme of liquefaction 
occurs below 77 K when quantum effects begin to 
dominate over classical. 

• Nanotube & film arrays are tunable over sensitive 
length-scales for cryogenic hydrogen. 

• Orthohydrogen preferentially adsorbs on surfaces 
and can be separated creating opportunities for 
quantum sieving or tunneling assisted catalysis. 

• Hydrogen quantum swelling could allow sieving of 
smaller molecules like neon for use in active 
dilution refrigeration cycles. 

• Nanoscale check valves could improve pressure 
control. 

H 
Y 
P 
E 
R 



   
         

        

        

        
       

  

       

 

16 3.2 Ortho-para catalyzed regeneration 
• Regenerative cycles (stirling, acoustic, pulse/GM, & magneto-caloric) tend to improve in 

performance (10-27%) when helium is swapped for hydrogen. (see Dros & Loftus). 

• Regenerators & catalyst beds both require high surface areas, yet have never been combined. 

• Regenerator scale up is challenging due to large azimuthal temperature gradients resulting in 
instabilities and stack by-pass. Ortho-parahydrogen conversion could counter-act stack by-pass 
by creating localized exotherms. 

• Soundspeed differences between ortho- & para- could promote para- migration towards cold. 
H 
Y 
P 
E 
R 

Provisional patent with WSU faculty Konstantin Matveev 



17 3.3 Cryogenic hydrogen diodes 
O H2 

P H2 

• Quantized ortho-parahydrogen conversion is an 
opportunity for tunable phase change below 77 K. 

• O-P catalysts should have high magnetic 
susceptibility <77 K, high surface area, and an 
internal energy transition matched to the 
conversion energy. 

• P/N junction diode tuned to 15 meV turns o-p 
conversion heat into useful electricity. 

• Reduces amount of exothermic heat lift required 
from any cycle (o→p) or can drive endothermic 
conversion for cycle cooling (p→o). 

• Reduced thermal noise in cryogenics could allow 
higher diode efficiencies. 

• In worst case could be simple ortho-parahydrogen 
composition sensor. 

15 meV o-p Heat 

Positive side e+ e+ e+ 

e+ 

e+ 

e+ 

Negative side h-h-
h-h-

h-
h-

15 meV Band Gap 
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e+

Unconverted heat from electrons 

(e+) transferring to holes (h-) (<15 

meV) is removed by coolant flow. H 
Y 
P 
E 
R 

Provisional patent with WSU faculty 

Matt McCluskey, John McCloy, and 

Scott Beckman. 
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4. In Summary. 
H 
Y 

1. We need many 5 T/day, efficient, low-cost liquefiers, and fast. P 
2. Cryogenic hydrogen liquefier concepts have not addressed this E 

need, let alone advanced, in 50 years. R 
3. Hydrogen has unique quantum opportunities for liquefiers. 

4. Several quantum concepts have the potential to advance nearly 
all LH2 cycles; but more fundamental research is needed, now. 
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Thank You! 

H 
Y 
P 
E 
R 

Please, follow along, reach out, or visit for a tour: 

https://hydrogen.wsu.edu/; Jacob.Leachman@wsu.edu; @hydrogenprof 

mailto:Jacob.Leachman@wsu.edu
https://hydrogen.wsu.edu

