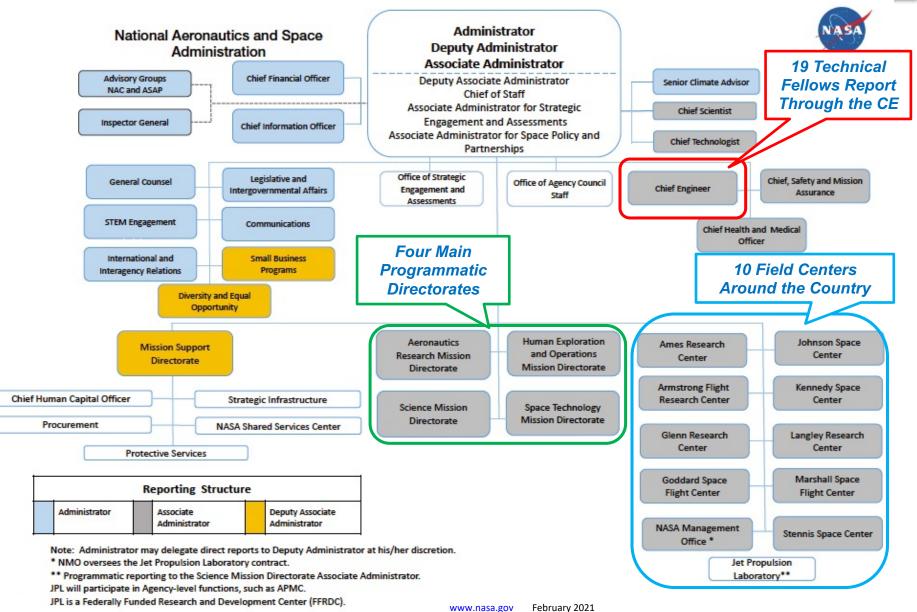


NASA and Cryogenic Technology Applications

Liquid Hydrogen Technologies Workshop

hosted by


The U.S. Department of Energy's Hydrogen and Fuel Cell Technologies Office and the National Aeronautics and Space Administration's Cryogenic Technical Discipline Team

February 22-23, 2022

Michael L. Meyer

NASA Technical Fellow for Cryogenics NASA Engineering and Safety Center NASA Langley Research Center

NASA Organizational Structure

Decomposition of Cryogenics at NASA - Scope of the Cryogenics Technical Discipline Team (TDT)

Thermal conditioning for Sensors, Instruments, and High Efficiency Electronic Motors

- Thermal parasitics
- Refrigeration below 10K
- Refrigeration above 10K
- Solid cryogens heat sink
- Solar Shields
- Coatings
- Heat switches

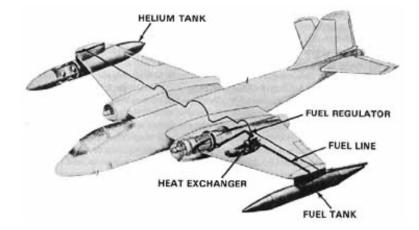
In-space Propellant Storage & Utilization

- Vacuum/partial vacuum insulation
- Micro-g fluid dynamics
- PMDs
- Gauging
- Pressure control
- CFD
- Cryocooling/zero boiloff
- Propellant Transfer
- Liquefaction

Launch Vehicle Propellant

- Atmospheric tank/line insulation
- Stratification
- Slosh/ullage collapse
- Feedline chill
- Geysering
- Mass Gauging
- Quick Disconnects

Ground Testing and Operations


- Atmospheric Insulation
- Densification
- Large Scale Refrigeration
- Quick Disconnects
- Cryogenic Pumps
- Leak/Fire Detection
- Automation/Fault Detection

Continued expertise in Cryogenic Analysis, Safety, & Properties are key to success in all areas of the discipline

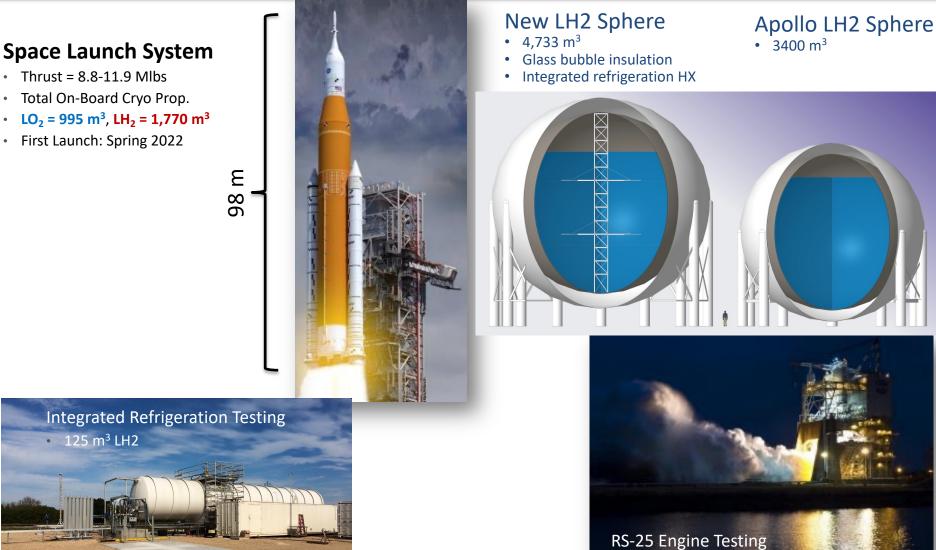
"Aeronautics" Flew with Liquid Hydrogen Before NASA Was Created

Then

- NACA Lewis (now Glenn) conducts Project Bee (1955-1959)
- B-57B modified to permit one engine to burn JP-4 or H₂

Now

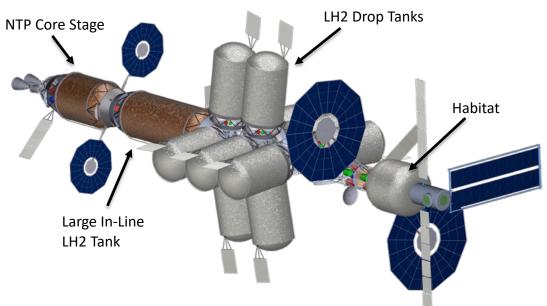
The Center for High-Efficiency Electrical Technologies for Aircraft (CHEETA)


- A multi-disciplinary consortium of researchers, scientists, and engineers from a variety of universities, laboratories, and industry groups.
- Studying electric aviation including superconductive components cooled by LH2 with H2 fuel cell generated electricity.

Ref: https://cheeta.illinois.edu

Launch Systems and Ground Testing Systems

162 lb/sec LH2 970 lb/sec LO2


• Thrust = 8.8-11.9 Mlbs

- Total On-Board Cryo Prop. •
- LO₂ = 995 m³, LH₂ = 1,770 m³ •
- First Launch: Spring 2022 •

Integrated Refrigeration Testing 125 m³ LH2

The orbital mechanics generally require a 2 – 3 year roundtrip and requires a very large amount of propulsive energy

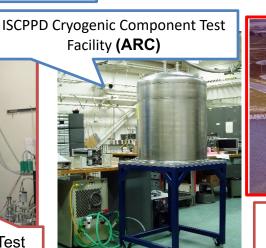
- One concept uses a Nuclear Thermal Propulsion (NTP)
 - Reactor, LH2 pump, hydrogen heat exchange, and a converging expanding nozzle to generate thrust
- Liquid hydrogen storage in multiple large tanks (high performance passive thermal control with integrated refrigeration for zero LH2 loss)
- Large habitat for crew
- In-space assembly

Strategic/Key Facilities and Assets

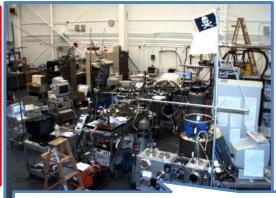
Key cryogenic facilities encompass a wide range of sizes, types, and capabilities

JWST emerging from Chamber A (JSC)

ZBO Test Article at the Small Multi-Purpose Research Facility (SMiRF) (GRC)



Test Sample being removed at the Hydrogen Test Facility (HTF) **(MSFC)**



IGAS HEC Cryocooler in the CSE 3-ft Vacuum Chamber (JPL)

Cryogenic Research and Integration Facility (CRIF) **(GSFC)**

Michael L. Meyer michael.l.meyer@nasa.gov