On-board Liquid Hydrogen Storage for Long Haul Trucks

R. K. Ahluwalia, H. S. Roh, J-K Peng, and D. Papadias

Liquid Hydrogen Technologies Workshop (Virtual) Hosted by DOE-EERE-HFTO and NASA's Cryogenics Technical Discipline Team

February 22-23, 2022

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

On-Board Storage System Metrics

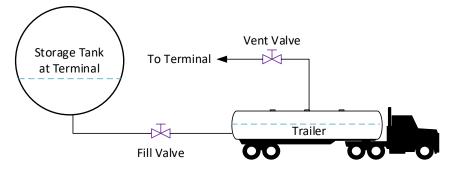

Task	Metric	Lab Call Goal	Analysis Approach
1	Storage System Range	750 miles	Assemble and analyze duty cycles
			Harmonize with 21st Century Truck Partnership
2	Storage System Capacity	>60 kg	Consider packaging and sizes of CNG tanks for MD and HD trucks
			Frame Mounted, Roof Mounted and Behind the Cab Configurations
3	Refueling Rate	8-10 kg/min	Develop specifications for off-board refueling pump
			Develop model for refueling dynamics
4	Discharge Rate	4.6 g-H ₂ /s	Consider 275-kW fuel cell system with 80-kWh battery storage system
		16.6 kg/h	Develop thermal management requirement
			Simulate tank discharge dynamics with and without on-board pump
			Develop pump requirements: 1-stage or 2-stage
5	Hydrogen Loss		Analyze duty cycles and determine duration of idle periods with engine on or off
6	Insulation and Dormancy		Consider multi-layer vacuum insulation
			Conduct heat transfer analysis to determine number of layers and vacuum pressure
7	Structural Analysis	5,000 refueling cycles	Finite element analysis of liner failure modes
		11,000 cycles	Finite element analysis of shell buckling
			Fatigue analysis
8	Strucural Materials		Aluminum 2219 -T87 for cryogenic applications
			Aluminum 5083 for cryogenic applications
9	Gravimetric Capacity	15 wt.% (project goal)	Conceptualize system with all BOP components
			Estimate component weights
10	Volumetric Capacity	>35 g/L (project goal)	Conduct system analysis and estimate componet volumes
11	System Cost	8-9 \$/kWh	Bottom-up cost analysis
12	Safety Codes and Standards	Applicable SAE and	Conduct FMEA analysis
		and GTR standards	Review codes
13	LH ₂ Refueling Interface		Conceptual design of LH ₂ refueling station

LNG vs. LH₂ Storage for Heavy-Duty Trucks

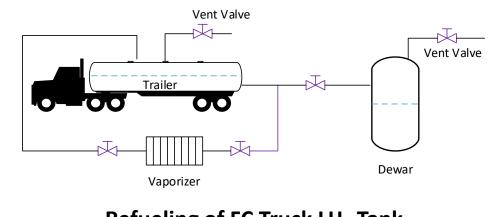
Vapor Shutoff Valve

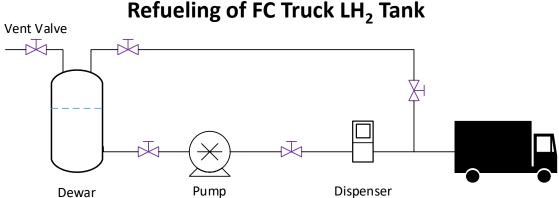
System with No Pump, Adapted from LNG Vehicle Fuel Tank System Operation

Manual, www.ChartLNG.com


Cummins Westport Incorporated (CWI) System with an In-Tank Reciprocating Pump (<u>https://digital.library.unt.edu/ark:/67531/</u> metadc777077/#description-content-main)

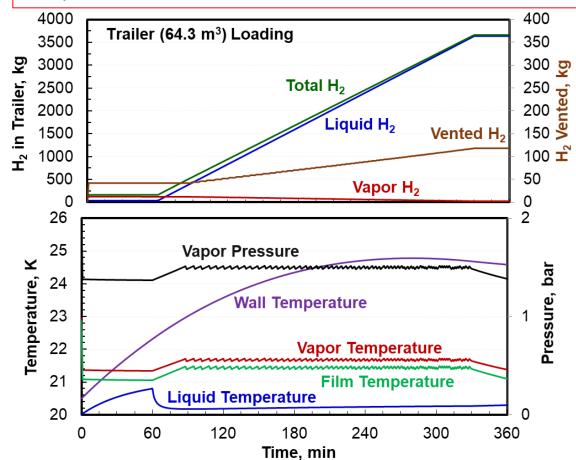
LH₂ vs. LNG


- Requires larger storage volume: LH₂ has 62% smaller LHV on MJ/L basis
- Narrower range of operating temperatures: 20 K NBP and 33 K T_c for LH₂, 111 K NBP and 190 K T_c for LNG
- Similar range of maximum allowable working pressures (MAWP): 10-15 bar


Metric	Units	LNG	LH ₂			
Normal Boiling Point (NBP)	К	111.7	20			
Critical Temperature (T _c)	К	190.6	33			
Critical Pressure (P _c)	bar	46.0	13			
Density at NBP	kg/m3	422	71			
Lower Heating Value (LHV)	MJ/kg	49	120			
	MJ/L	20.5	8.5			
Heat Capacity at Constant Pressure (C _p)	kJ/kg.K	3.48	14.3			
Latent Heat of Vaporization at NBP	kJ/kg	511	449			
Tank Storage Pressure	bar	5.4 - 11.5	5.0 - 8.0			
Tank Storage Temperaure	К	122 - 147	22 - 33			
Maximum Allowable Working Pressure	bar	15	10			
Engine/FC Pressure						
SING: Spark Ignition Natural Gas Engine	bar	5 - 8 (SING)	2.5 (H ₂ FC)			
PIDF: Port Injected Diesel Fuel Engine	bar	8 (PIDF)				
HPDI: High Pressure Direct Injection Engine	bar	>205 (HPDI))			

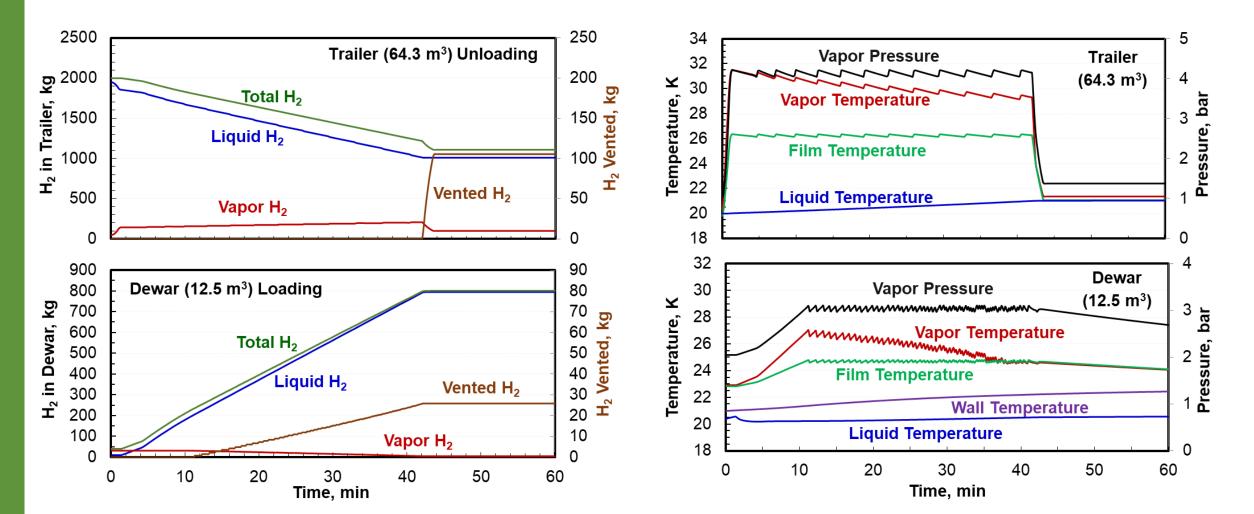
Trailer Loading at Terminal

Dewar Loading at Refueling Station



LH₂ Scenario

Trailer Loading at Terminal (Liquefaction Plant)


- Reference: Guillaume Petitpas, "Simulation of boil-off losses during transfer at a LH₂ based hydrogen refueling station," IJHE, 43 (2018) 21451-21463
- Pressure transfer from terminal at 24 psia to trailer at 20-22 psia, ~800 kg/h LH₂ transfer rate
- 3.3% total boil-off during loading and initial trailer depressurization

Dewar Loading at Refueling Station

- Reference: Guillaume Petitpas, "Simulation of boil-off losses during transfer at a LH₂ based hydrogen refueling station," IJHE, 43 (2018) 21451-21463
- Pressure transfer from trailer pressurized to 60 psia to dewar maintained at 45 psia, ~1100 kg/h average LH₂ transfer rate
- 16% total boil-off loss including 3% from dewar during loading and 12% from final depressurization of trailer to 20 psia

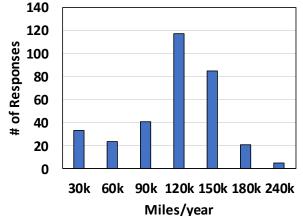
Class 8 HD Truck Duty Cycles

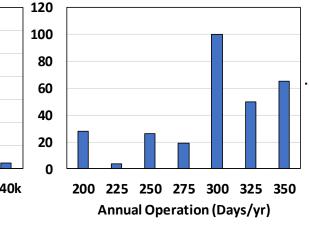
Semi Trailer Long Haul Truck

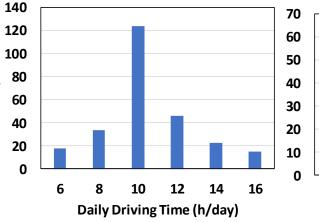
365 questionnaires collected at 6 private stop chains for trucks: Journal of the Transportation Research Board, No. 1880, pp. 29-38

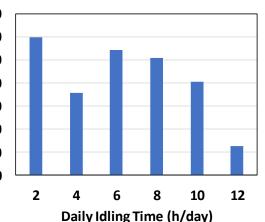
- An average long-haul truck driver travels
- ~112,000 mi annually during a 292-day period
- Average fuel consumption: 6.3 mpg (0.85 gallons/h at idling)
- An average long-haul day includes ~10.5 h driving, ~6 h extended idling and ~3.4 h with the engine off.
- This is consistent with the typical 6 hours per day of extended idling estimated by the American Trucking Associations and by Caterpillar: ANL/ESD-43, 2000

Class 8 – Refuse Trucks

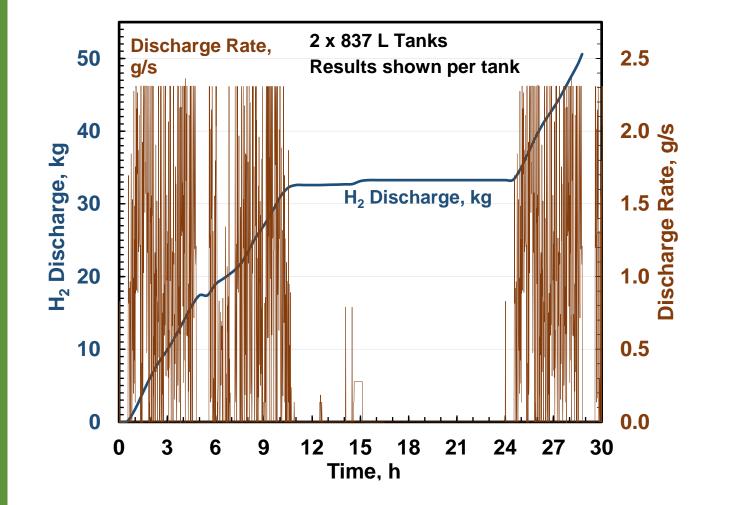

- Fleets used for residential refuse pickup 5 to 6 days per week: 72-gallon diesel tank, 2.93 mpg fuel economy, 11.5 mph average speed
- Between Nov. 1998 and May 2000, data were collected on selected LNG and diesel trucks from Waste Management as part of the U.S. DOE Fuel Truck Evaluation Project: www.doe.gov/bridge
- Diesel trucks averaged 2,295 miles/month.
- On a given day of operation, the trucks' engines run the entire time the driver is working, 7 to 12 hours per day
- Assuming 6 days of operation, the average daily operation from the data is ~8.5 h/day


Class 8 – Drayage Truck


2018 Feasibility Assessment for Drayage Trucks. San Pedro Bay Ports Clean Air Action Plan. March 2019

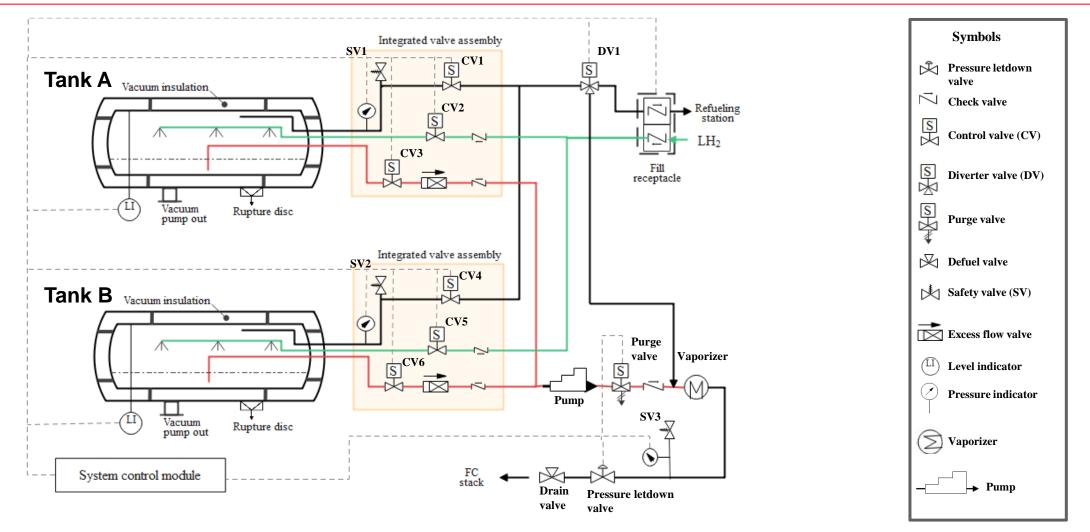

- ~17,500 registered Class 8 trucks in the San Pedro Bay Ports' drayage fleet
- Refueling interval: 2-4 days for diesel, daily for LNG
- Shifts per day: 1 typical, 10-15% of operators do two shifts
- Durability: 500,000 miles or at least 8 years for diesel
- Availability: 90%, down 2-3 days per month for maintenance
- Operating time per day ~10-14 hrs.

Semi trailer long haul truck duty cycle: 10.5 h driving, 6 h engine idle, and 7.5 h engine off, 1-3 d dormancy



LH₂ Storage for Heavy Duty Trucks: Packaging Options and Capacity

- Autonomie Simulation of Power Demand by Vincent Freyermuth (ANL): 21st Century Partnership platform for long-haul class 8 HD truck
 Fuel Cell Simulation of Hydrogen Consumption: 275 kW FCS hybridized with 70 kWh battery
- LH₂ Storage System Requirements and Performance
- Peak H₂ flow rate: 4.6 g/s (16.6 kg/h)
- H₂ storage system (S1-1d) range with two FM 66 cm (OD) x 305 cm (OL) tanks with 82 kg usable H₂ capacity: 621 miles

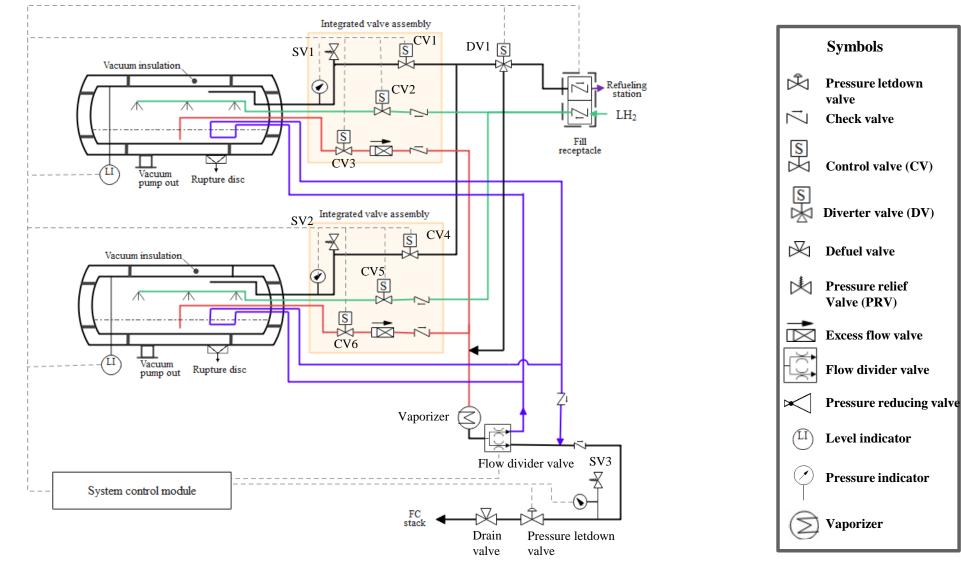


Baseline Packaging Options Outer Diameter (cm) X Outer Length (cm)					
FrameRoofBehind theMounted, FMMounted, RMCab, BTC					
2 Tanks	4 Tanks	2, 3 or 4 Tanks			
53 X 152	41 X 203	41 X 203			
53 X 203	41 X 246	53 X 203			
53 X 120	30 X 246				
66 X 152					
66 X 203					
66 X 229					
66 X 305					

LH₂ Storage for Heavy Duty Trucks: System with Pump

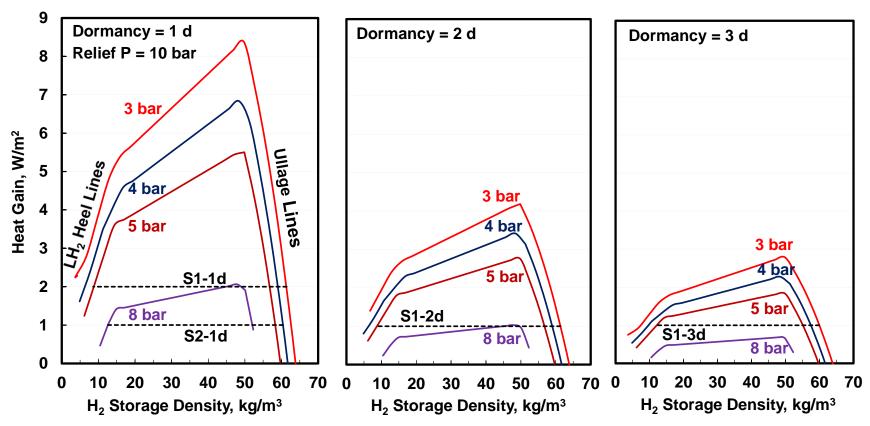
System options and operating pressures

- External or internal on-board pump
- Off-board refueling pump: Low (3-5 bar) and medium-pressure (5-8 bar)
- Tank operating pressure range: low pressure determined by the refueling pump
- May need to return some gaseous H₂ to station storage tank during refueling

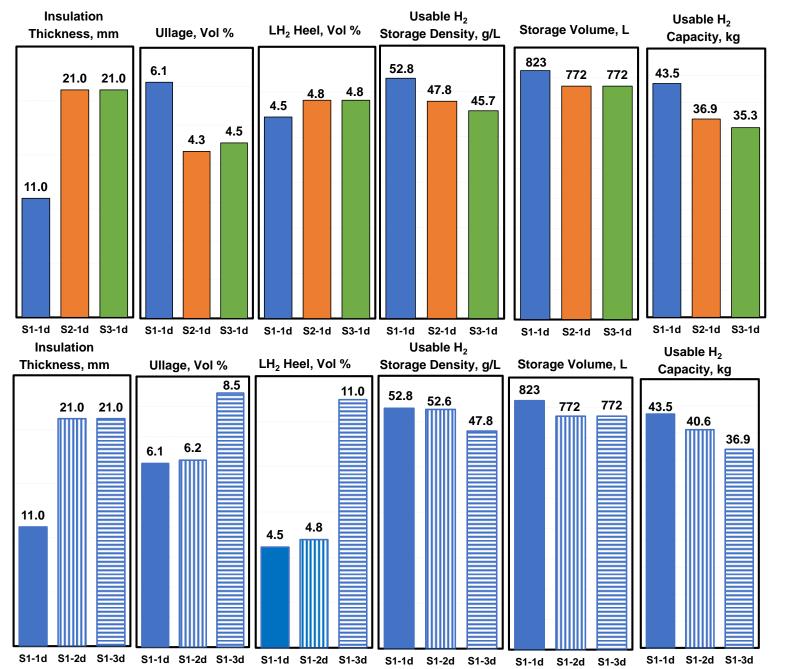

LH₂ Storage for Heavy Duty Trucks: System without Pump

System options and operating pressures

- No on-board pump
- Tank operating pressure range: 5-8 bar
- May require an in-tank heat exchanger

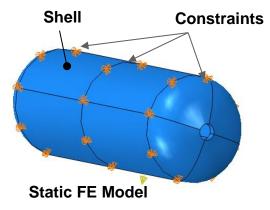

- Withdraw liquid or vapor from tank
- Off-board refueling pump: medium-pressure (5-8 bar)
- May need to return some gaseous H₂ to station storage tank during refueling

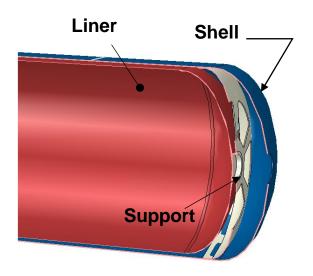
Ullage and Heel


- Ullage: Minimum vapor space required to meet dormancy with full fuel tank. Determines tank H₂ storage capacity. Ullage may also be limited by dynamic loads.
- Heel: LH₂ reserve (vol%) for zero boil-off loss within specified dormancy. Heel and ullage determine the tank usable H₂ storage capacity.

System	On-Board Pump	Fuel Cell	Tank Operating	Feasibility / Dormancy		zy (Q)
	(ΔP)	Inlet Pressure	Pressure	1 day (1d)	2 days (2d)	3 days (3d)
S1	Yes (4 bar)	5 bar	3 - 5 bar	Yes (2 W/m ²)	Yes (1 W/m ²)	Yes (1 W/m ²)
S2	Yes (4 bar)	8 bar	4 - 8 bar	Yes (1 W/m ²)	TBD (0.8 W/m ²)	No
S3	No	5 bar	5 - 8 bar	Yes (1 W/m ²)	TBD (0.8 W/m ²)	No

LH₂ Storage System Performance


Performance of Systems S1, S2 and S3 with 1-d Dormancy

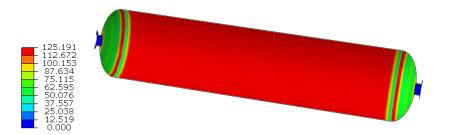

- Effect of FC inlet pressure (5 vs. 8 bar) on system performance: 15% loss in usable H₂ capacity from 43.5 to 36.9 kg
- Advantage of on-board pump (5 bar): 19% in usable H₂ capacity from 43.5 to 35.3 kg

Effect of Dormancy on Performance of System S1

- 1-d vs. 2-d dormancy: 7% loss in usable H₂ capacity from 43.5 to 40.6 kg, mainly due to lower storage volume
- 2-d vs. 3-d dormancy: 9% loss in usable H₂ capacity from 40.6 to 36.9 kg due to lower usable H₂ storage density

Section View of LH₂ Tank showing Liner Support

LH₂ Tank Analysis: Liner and Liner Support

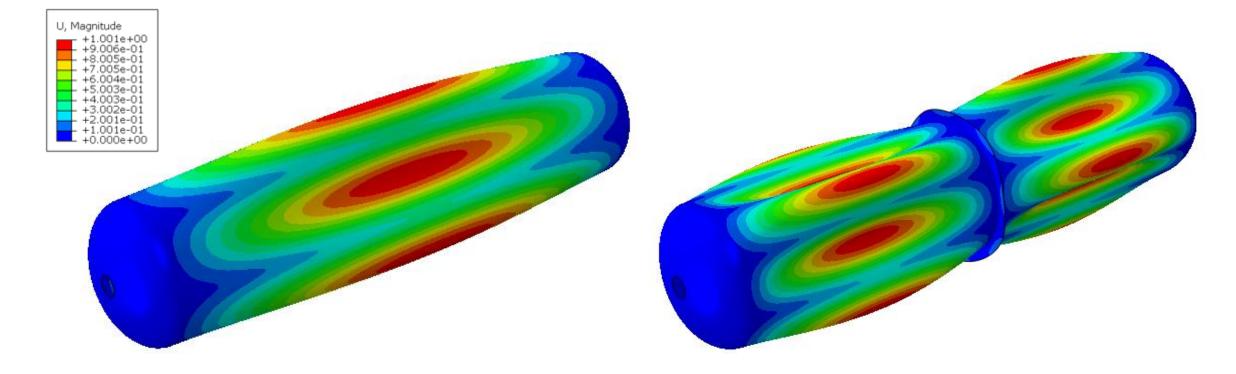

- LH₂ tank mounted to the frame by straps, 8 bar operating pressure. Maximum allowable working pressure (MAWP) of 10 bar
- Liner suspended inside the shell using brackets at the two ends that are welded to shell and liner.
- Analysis Method: ASME BPVC VIII Div-1 code and room temperature material properties for liner thickness, ABAQUS FE analysis for maximum stress and safety factor

Material Properties

Prop.	σ_{ult}	σγ	Е	σ_{allow}	able, MPa	Density	S.F.
Mat.	MPa	MPa	GPa	RT	-195 °C	g/cc	5.1.
Al 2219-T87 ¹	454	344	70	129.7	196.9	2.84	3.5
Al 5083-O ²	276	124	70	78.8	107	2.66	3.5
SS 304, 316 ²	515	205	200	137	243	8.0	3.76

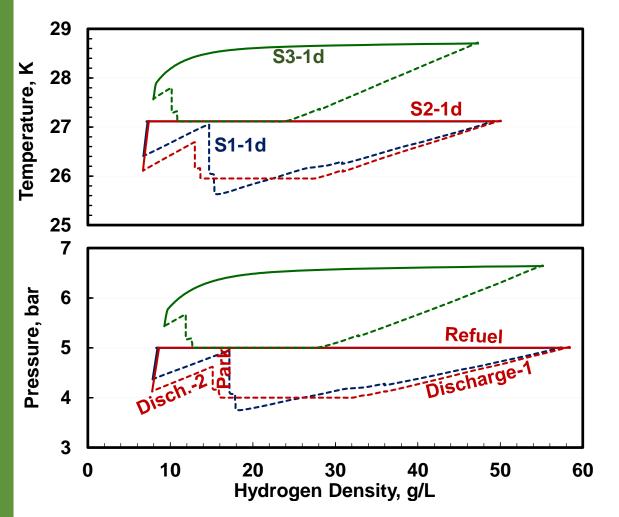
Liner Thickness

Prop.	Liner				
Mat.	Thickness, mm	Weight, kg			
Al 2219-T87 ¹	2.7	44			
AI 5083-O ²	4.4	74			
SS 304, 316 ²	2.6	139.4			



Principal Stresses on The Liner (D660_L3050)

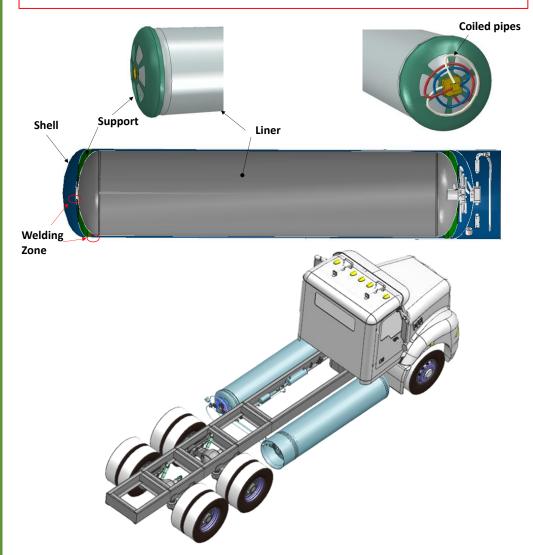
LH₂ Tank Shell Analysis


- Shell failure mode: The shell is subject to buckling because it has MLI layer in a vacuum state inside and is exposed to 1 bar outside
- Analysis method: ASME BPC BPV VIII Div-1 code, and ABAQUS FE analysis for maximum stress and safety factor
- Calculated safety factor: 3 for 26" x 120" tank
- Since the 1st buckling mode is found in the circumferential direction, adding a 6-mm x 50-mm stiffener along the circumferential direction reduces the shell thickness from 5.8 mm to 4.5 mm and the shell weight from 107 kg to 85 kg.

Shell with a Stiffening Ring

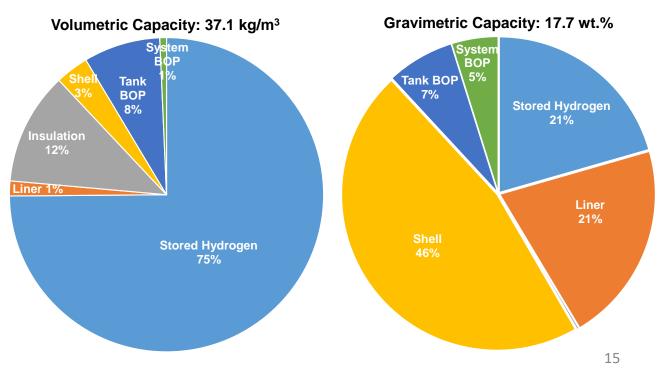
Refueling and Discharge Dynamics

Important Conclusions from Drive Cycle Simulations

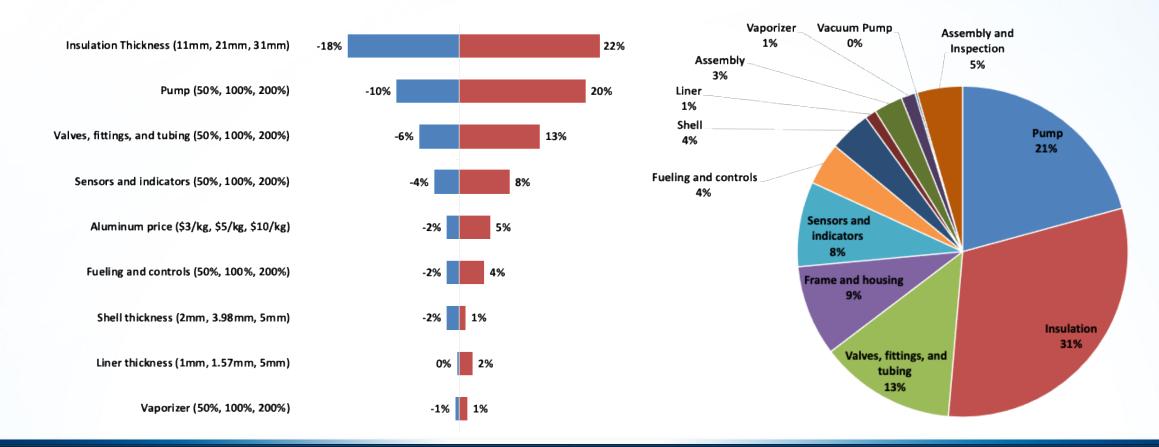

- The amount of H₂ returned to the station during refueling is 9.7% in S1-1d, 9.2% in S2-1d, and 0 in S3-1d.
- Systems S2-1d and S3-1d require heat to be supplied during discharge.
- System S3-1d may be impractical if the requirement for 8 bar FC inlet pressure cannot be relaxed.

Parameters	Units	S1-1d	S2-1d	S3-1d
Stationary Pump Pressure	bar	5	5	8
Vacuum Pressure	mtor	1.4	1.1	1.1
Peak Tank Pressure	bar	5.0	5.0	6.6
Ullage	%	6.1	4.3	4.5
LH ₂ Heel	%	4.5	4.8	4.8
Usable H ₂	%	86.3	86.7	83.2
H ₂ Storage Density	kg/m ³	57.5	58.4	55.2
Usable H ₂ Density	kg/m ³	49.6	50.6	45.9
H ₂ Returned to Station during Refueling	%	9.7	9.2	0.0
Heat Supplied during Discharge	kJ	0	324	412
H ₂ Stored after Refueling	kg	47.3	45.1	42.6
Usable H ₂	kg	40.8	39.1	35.5

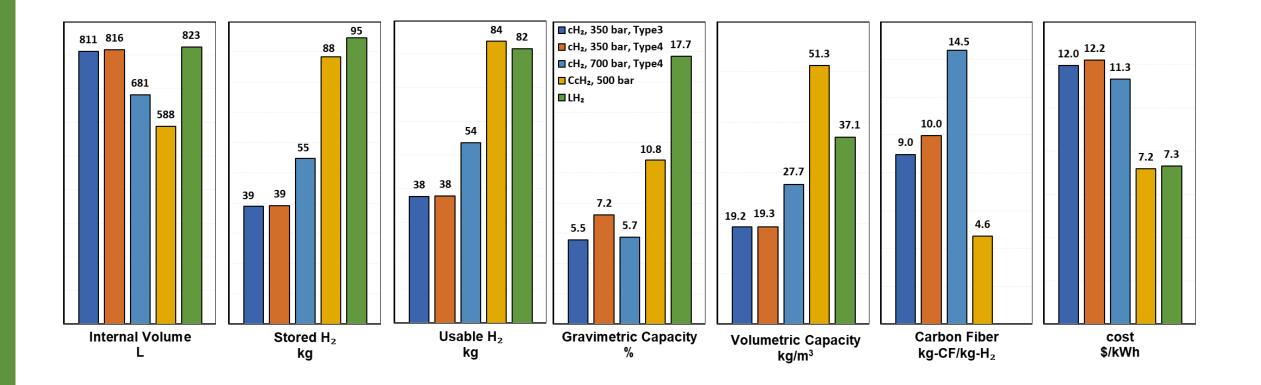
System Conceptualization and Performance


 $\mathbf{\wedge}$

- Supports welded to the liner and shell
- Coiled pipes to reduce heat transfer
- Con: Welding to shell may enhance heat transfer. Thermal conductivity: 236 (Al) vs. 54 (SS) W/m.K


Parameters	Units	S1-1d	S2-1d	S3-1d
H ₂ Stored	kg	94.6	90.2	85.2
System Gravimetric Capacity	wt.%	17.7	17.4	15.9
System Volumetric Capacity	kg/m ³	37.1	35.5	32.2
Range Between Refueling	miles	621	595	539

Storage System S1-1d Weight and Volume Distributions


Bottom-up Cost Analysis (ST223)

- Completed a preliminary bottom-up capital cost analysis for the baseline 110.5 kg H₂ frame mounted two-tank LH₂ storage system
- Breakdown and sensitivity analysis are shown for annual production of 100k systems
- Balance of plant components and insulation dominate the system cost and have the greatest impact on cost sensitivity
- Additional work is planned to refine and understand pump costs

Comparative Performance of Liquid (LH₂), Compressed (cH₂) and Cryo-Compressed (CcH₂) H₂ Storage Systems

Packaging Options¹ ¹http://www.a1autoelectric.com

Summary: Progress Toward DOE Goals

Task	Metric	Lab Call Goal	Progress of Analysis Toward Lab Call Goals
1	Storage System Range	750 miles	539 - 621 miles
2	Storage System Capacity	>60 kg	71 - 82 kg
3	Refueling Rate	8-10 kg/min	Met. Pump development not withing scope of analysis.
4	Discharge Rate	4.6 g-H ₂ /s	Met. In-tank pump development not within scope of analysis.
		16.6 kg-H ₂ /h	
5	Hydrogen Loss		No loss within dormancy period.
6	Insulation and Dormancy		1-3 d dormancy feasible with existing 11-22 mm MLI, 1-2 mtorr vacuum pressure
7	Structural Analysis	5,000 refueling cycles	Method developed to design against liner and shell failure modes
		11,000 cycles	Fatigure analysis to be carried out.
8	Strucural Materials		Aluminum 2219 -T87 preferred for LH ₂ trucks
9	Gravimetric Capacity	15 wt.% (project goal)	15.9 - 17.7 wt.%.
10	Volumetric Capacity	>35 g/L (project goal)	32.2 - 37.1 g/L.
11	System Cost	8-9 \$/kWh	<8 \$/kWh
12	Safety Codes and Standards	Applicable SAE and	FMEA analysis in ST223
		GTR standards	Code review in ST223.
13	LH ₂ Refueling Interface		Finished in ST223.