

OPPORTUNITIES AND CHALLENGES OF LIQUID HYDROGEN SUPPLY CHAIN

> Amgad Elgowainy, PhD Senior Scientist and Group Leader

> **Ed Frank, PhD** Principal Energy Systems Scientist

Argonne National Laboratory

Presentation at Liquid Hydrogen Technologies Workshop February 22, 2022

Today, more than 10M metric tons of hydrogen are produced in the U.S. annually <u>near</u> their end use

1600 mi. of H₂ pipeline; **10** Liquefaction plants in North America

A By-product Gas - Steam Crackers

BENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

~260 MT/day H₂ liquefaction capacity in North America

Region	Liquefaction Capacity (MT/day)
California	30
Louisiana	70
Indiana	30
New York	40
Alabama	30
Ontario	30
Quebec	27
Tennessee	6
Total	263

 \rightarrow Liquefaction energy intensity = 10-15 kWhe/kg_{H₂}

Four additional H_2 liquefaction plants have been recently announced to serve the growing H_2 market

Infrastructure of gaseous hydrogen delivery

Argonne

Infrastructure of liquid hydrogen delivery

Argonne

Argonne models evaluate techno-economics and environmental implications of H₂ production and delivery

HDSAM

Techno-economic Evaluation

GREET

Environmental Life Cycle Evaluation

Energy use	Air pollutants	Greenhouse gases	Water consumption			
 Total energy: fossil energy and renewable energy Fossil energy: petroleum, natural gas, and coal Renewable energy: biomass, nuclear energy, hydro-power, wind power, and solar energy 	 VOC, CO, NOx, PM₁₀, PM_{2.5}, and SOx Estimated separately for total and urban (a subset of the total) emissions 	 CO₂, CH₄, N₂O, black carbon, and albedo CO_{2e} of the five (with their global warming potentials) 	 Addressing water supply and demand (energy-water nexus) 			
Life cycle modeling of fuel cell and baseline vehicle/fuel						
systems						

https://hdsam.es.anl.gov/

https://greet.es.anl.gov/

Argonne 🕰

Cost contribution of pipeline delivery

7

Cost contribution of tube-trailer delivery

Cost contribution of LH₂ delivery

Cost of Hydrogen Delivery and Refueling for LD FCEVs is strongly driven by onboard storage requirement

Versatile refueling configuration options with LH₂ delivery

Compression and pumping dominate refueling cost for high-pressure tanks

Liquid supplied stations can handle faster fills with less cost increase compared to gaseous supply
 Cost of H₂ delivered to the station is additional

Hydrogen production today is mainly from NG SMR

✓ SMR: Steam Methane Reforming

✓NG: Natural gas

✓LHV: Lower Heating Value

✓WTW: Well-To-Wheels

 \checkmark E10: 10% ethanol in gasoline (by vol.)

✓GGE: Gallon Gasoline Equivalent

✓ICEV: Internal Combustion Engine Vehicle

At 72% NG to H_2 energy efficiency (LHV-basis)

 \rightarrow Well-to-plant gate GHG emissions = 10 kg_{CO2e}/kg_{H2}

HDSAM liquefaction model

- Scaling laws based on aggregation of industry input
 - Liquefier CAPEX
 - Specific energy consumption (<u>SEC</u>)
- Modeling and analysis in the literature suggest SEC can potentially be as low as 6 kWh/kg

<u>SLC</u> – Specific liquefaction cost

Liquefier Capacity (tonne / day)

Delivered	Liquefier	SLC	SEC	GHG Emissions 2021 (US mix)
	5 tpd	\$4.0 / kg-LH2	11 kWh / kg	4.8 kgCO _{2e} / kgH ₂
30 tpd	33 tpd	\$2.8 / kg-LH2	9.4 kWh / kg	4.1 kgCO _{2e} / kgH ₂
120 tpd	130 tpd	\$2.1 / kg-LH2	8.2 kWh / kg	3.6 kgCO _{2e} / kgH ₂

Argonne 🦨

Complete C2G GHG emissions: gaseous supply (i.e., not including liquefaction GHG emissions)

Liquefaction: life-cycle criteria air pollutant emissions can also be significant

LH₂ impacts criteria air pollutant emissions depending on electricity grid mix used for liquefaction (US grid mix used for the above graph)

Argonne 🛆

Our models and publications are available at: <u>https://hdsam.es.anl.gov/</u> https://greet.es.anl.gov/publications