Medium- and High-Voltage Silicon Carbide Power Products: Power Electronics for Hydrogen Technologies

KRAIG J. OLEJNICZAK, PH.D., P.E.

Research Scientist, Medium- and High-Voltage Power Products Kraig.Olejniczak@Wolfspeed.com 479.721.1496

H2-PACE: POWER AND CONTROL ELECTRONICS FOR HYDROGEN TECHNOLOGIES

DECEMBER 2-3, 2021

INVESTING \$720MOVER FIVE YEARS TO EXPAND SILICON CARBIDE CAPACITY

1484,000 SQ FT fabrication facility

INCREASE IN OUTPUT

increase in silicon carbide wafer fabrication

DELIVERING

> 25%

More output compared to the previously planned facility

increase in silicon carbide materials production

state-of-the-art automotive-qualified production facility in Marcy, NY

MOHAWK VALLEYFAB CAPACITYRAMP

On track to have New York Mohawk Valley Fab up and running by March 2022 and expansion of materials factory in Durham, NC progressing as planned

VALUE PROPOSITIONS ENABLED BYSIC MOSFETs VERSUS Si IGBTs

System Benefits

- Reduced system first cost
- Reduced levelized cost of electricity (LCOE) for most every application
- Reduced weight/mass; increased gravimetric power density
- Reduced volume/form factor; increased volumetric power density
- Fast switching for increased control system bandwidth
- Faster fault interruption via high-speed switching
- Better rated- and light-load efficiencies across all applications
- Enabling > 1 kHz fundamental frequency for high-speed, MW-class PMSMs
- Better heavy ion performance for extreme environments

SiC MOSFETs vs. Si IGBTs

There is no "knee" voltage drop in SiC MOSFETs like Si IGBTs, much more efficient at light load (better conduction losses)

 $\sim 10 \times$ lower switching losses, so can be more efficient and increase RMS current as a result...or just be more efficient at the same RMS current

Typically with a Si IGBT there is a PiN diode in parallel. This diode is slow and has a large reverse-recovery peak current. As a result, you must oversize the Si IGBT to handle the IGBT on-state peak current at temperature and the reverse-recovery maximum peak current.

MV/HVPACKAGE PLATFORMS ADDRESSING BROAD APPLICATIONS

LMB

- 1700 V(Enhanced isolation)
- 3300 V

MMB

- 3300 V(Enhanced isolation)
- 6500 V

- 3300 V(Enhanced isolation)
- 6500 V(Enhanced isolation)
- 10 kVand beyond...

We harness the power of Silicon Carbide to change the world for the better

