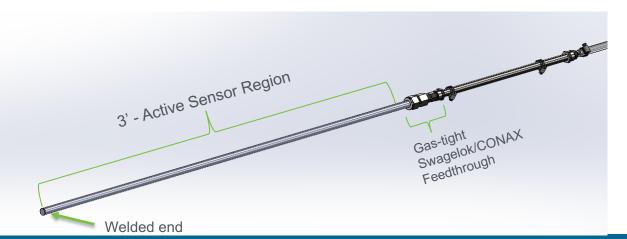


Development of an Optical Fiber Based Gamma Thermometer

Advanced Sensors and Instrumentation
Annual Webinar


October 29, 2020

Thomas Blue
The Ohio State University, Texas A&M
University, Idaho National Laboratory

Objective

- Develop an optical fiber-based gamma thermometer (OFBGT) in order to determine the power distribution in a reactor core by using statistical data analytic methods
 - An OFBGT measures the ΔT along the axial length of the sensor which can be used to infer core power distribution using response functions generated by MCNP (ΔT is measured by optical fiber)
 - We are demonstrating this measurement technique in both the Ohio State University Research Reactor (OSURR) and the Texas A&M TRIGA Reactor
- Participants: The Ohio State University, Texas A&M University, INL

OFBGT

OSURR

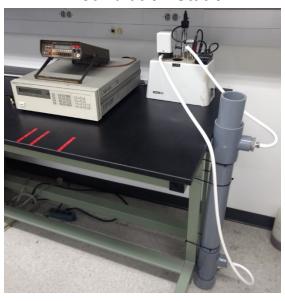
TAMU TRIGA

Schedule

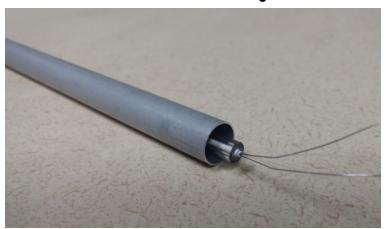
- Track 1: Build OFBGTs and test them in a University Research Reactor
 - Year 1
 - Task 1.1: Design OFBGTs ✓
 - Task 1.2: Design and build irradiation test rigs ✓
 - Year 2
 - Task 2.1: Construct OFBGTs*
 - Task 2.2: Test OFBGTs with silica fiber in OSURR and TAMURR*
 - Year 3
 - Task 3.1: Repeat Tasks 2.1 and 2.2 for OFBGTs with sapphire fiber
- *Have been delayed due to COVID-19 restrictions

									_			
	2018		20	19		2020				2021		
Track 1	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Task 1.1												
Task 1.2												
Task 2.1												
Task 2.2												
Task 3.1												
Track 2												
Task 1.1												
Task 1.2												
Task 1.3												
Task 2.1												
Task 2.2												
Task 3.1												

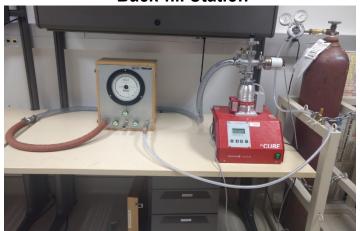
- Track 2: Modeling and Data Analytics
 - Year 1
 - Task 1.1: Create modeled(MCNP and ANSYS) OFBGT data for irradiation facilities ✓
 - Task 1.2: Develop methods and algorithms to process OFBGT data using modeled data ✓
 - Task 1.3: Apply data analysis methods to MCNP OFBGT data to predict power distributions ✓
 - Year 2
 - Task 2.1: Apply data analysis methods to test data for OFBGT with silica fiber ✓
 - Task 2.2: Refine the models and data analysis methods (in progress)
 - Year 3
 - Task 3.1 Repeat Tasks 2.1and 2.2 for data for OFBGTs with sapphire


Summary of accomplishments

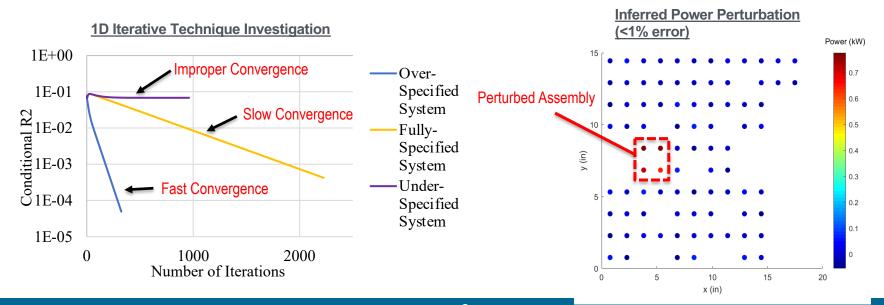
- Track 1
 - Constructed a back-fill station and a calibration station
 - Established the construction and assembly techniques for the OFBGT
- Track 2
 - Implemented an iterative step into the data analytic method
 - Demonstrated the ability to infer the 2D power distribution in the TRIGA
 - Developed the uncertainty quantification technique
- 2 papers published
 - Analytical thermal modeling paper
 - Data Analytic method paper
- One paper under review
- Provisional Patent submitted


Track 1 Accomplishments

- Back-fill station allows us to pull vacuum on the OFBGT and then fill with 1 atm of inert gas before sealing off compression feedthrough
- Calibration station allows one to calibrate based on both different energy deposition rates and coolant temperatures
- OFBGT construction progress can be seen below; remaining steps involve attaching feedthrough and welding the bottom.


Calibration Station

OFBGT Construction Progress



Back-fill Station

Track 2 Accomplishments

- Implemented an iterative step into the data analytic method to make the solution consistent, and thus more accurate
 - We have investigated this iterative technique in 1D and realized the importance of over-specification
- Demonstrated the ability to infer the 2D power distribution in the TRIGA based on simulated OFBGT data
 - We consider a simulated perturbed power distribution, and infer based on the simulated OFBGT array response
 - Error in the inferred power distribution is <1% for all data points
- Developed the uncertainty quantification technique tailored to our specific method
 - Accounts for the dependence introduced into the system from the iterations

Technology Impact

Describe how this technology:

- The OFBGT allows one to obtain significantly more data points than previously implemented thermocouple GTs
 - This also enables the capability of power inferencing
 - As a more basic application, OFBGTs can be used to calibrate LPRMs in BWRs, instead of TIPs
- This work supports the DOE mission by addressing the demand for sensors for "big data" acquisition
- An array of OFBGTs in a commercial reactor would enable high fidelity 3D power monitoring
- The sensor could be commercialized by utilization of reactor qualified materials, laser welding, and drift correction techniques

Conclusion

- An OFBGT measures the ΔT along the axial length of the sensor which can be used to infer power distribution using response functions generated by MCNP (ΔT is measured by optical fiber)
- We have developed and demonstrated the data analytic methods necessary to infer power distribution based on the OFBGT response
- We have designed and constructed a calibration station and back-fill station for the OFBGTs
- We are in the process of constructing the OFBGTs
- We plan to test an OFBGT at the OSURR in 12/2020, and test an effective OFBGT array in 3/2021
- Questions?