

Fiber Optics Sensor Enabled I&C and Artificial Intelligence Data Analytics for Nuclear Energy

Advanced Sensors and Instrumentation

Annual Webinar

October 29, November 5, November 12, 2020

Kevin P. Chen
University of Pittsburgh

Project Overview

Development of radiation harden distributed fiber sensors and multiplex sensors for nuclear energy

- Femtosecond reel-to-reel sensor fabrications
- Robust packaging technique to penetrate pressure boundary
- Interrogation systems readily to be integrated with I&C
- Computational efficiency sensor demodulation algorithm
- High-resolution sensor data enabled artificial intelligence
- Improve overall TRL for fiber sensor for near-future deployment

Participants (2020)

- Sheng Huang, Zachary Splain, Mohan Wang, Kehao Zhao
- Collaborators: NETL (Michael Buric, Ping Lu, Mudabbir Bardar),
 Westinghouse (Thomas Tweedle, John Long)

Schedule

- 2020: Sensor development, prototyping, TRL improvements
- 2021: Extensive Sensor testing for NE applications

Accomplishments # 1: Reel-to-Reel Sensor Fabrications

- Fast and continuous fabrication over >tens meters
- -fs (190fs 5 ps), 800-nm, 532-nm, 355 nm outputs
- Sensors fabrication over 20 m continuously
- Applied to wide array of rad-hard fibers
- Real-time monitoring using an Optical Backscattering Reflectometer (OBR) and OSA
- New laser system comes online

Accomplishments # 1: Reel-to-Reel Sensor Fabrications

Fs-laser inscription of Type-II IFPI Sensor Array

Precision Control of Formation of Nanograting

FBG Sensor String

Laser Enhanced Rayleigh Scattering Profile

Accomplishments # 1: Reel-to-Reel Sensor Fabrications

Optimization of Laser Processing to Ensure High-T Stability and Low-Loss

- Nanograting formation threshold at 100 nJ pulse energy
- With the increase of pulse energy, size of nanograting increases
- High visibility of 0.49 at optimized pulse energy of 160 nJ
 - Low insertion loss of 0.0024 dB per sensor

5

Accomplishments # 2: Robust Sensor Packaging Scheme

- Glass sealant packaging to ensure high-T operation
- Provide strain and temperature sensors through pressure boundary
- Flexible packaging schemes enable multi-parameter measurements

Accomplishments # 3: Rapid Demodulation Algorithm and Interrogation Systems for NE I&C

Bunman Frequency Estimation

$$F(\xi) = \sum_{n=0}^{N-1} \gamma e^{i(\frac{l\Delta kn}{N} + lk_0 + \varphi_0)} e^{-2\pi i n \xi/N}$$

$$= \gamma e^{i[lk_0 + \varphi_0 + \pi(\frac{l\Delta k}{2\pi} - \xi)(\frac{N-1}{N})]} \frac{\sin[\pi(\frac{l\Delta k}{2\pi} - \xi)]}{\sin[\pi(\frac{l\Delta k}{2\pi} - \xi)/N]}$$

$$\varphi\left(\frac{l\Delta k}{2\pi}\right) = \varphi_{\xi p} + 2\pi a = \varphi_m + 2\pi a$$

$$\xi_p = \frac{k_1 - k_0}{k} \left(\varphi_m - \varphi_0 + 2\pi [a]\right)$$

- Phase based demodulation
- Robust algorithm avoid "phase jump"
- Computationally efficient
- Easy implementation into DSP chips
- Dedicate sensor demodulation electronics developed
- Support 2 kHz sampling rates
- 40-ns or 0.01C temperature accuracy.
- Eight channels

Accomplishments # 3: Distributed Fiber Sensor In-Pile Testing

- Extensive in-Pile Testing
- MIT Reactor at 650C
- Two type of rad-hard fiber
- Low-cost Telecom fiber
- Fs-enhanced Rayleigh Profile
- Two month testing (due to COVID)
- Collaboration with LUNA Innovation, MIT, and INL

THE MAIN CHARACTER IS TICS OF OPTICAL FIBERS FOR IN-CORE RADIATION TEST.			
SAMPLE#	Fiber type & V endor	Single-mode specifications	Laser enhance -ment
1,2	SMF28e+ from Corning	NA=0.14, Ge-doped core	✓
3			×
4,5	Super RadHard from Draka	≥ 0.41 wt% and 1.2 wt% fluorine doped in core and cladding	✓
6			×
7	RRSMFB from Fujikura	Fluorine-doped silica core and cladding, chlorine concentration of core ≥ 1ppm	~

TABLE I

8

Accomplishments # 3: Distributed Fiber Sensor In-Pile Testing

Accomplishments # 3: Distributed Fiber Sensor In-Pile Testing

Spectral Shift Quality VS. Time

First Ever Temperature Profile of a Running Reactor (1-cm Resolution)

Sensor Data Enabled VR and AI!

Accomplishments # 4: Sensor Data Enabled Artificial Intelligence

FBG Sensor In-Pile Testing

Bayesian Learner Prediction

- Machine learning mitigation of sensor drift
- Bayesian learner for reactor anomaly event detection
- 98.3% of sensor drift can be eliminated through ML
- Anomaly event trigged 3C temperature variation can be detected.
- "Bad Sensor" is better than No Sensor!

Accomplishment #5: Improving TRL for Reactor Deployments

- Comprehensive FBG sensor array high-T testing (900C-1000C)
- Average STD <0.6C over 10 days spans (comparing with TC)
- Further increase sensor counts and testing duration in 2021.

12

Technology Impact

- Innovation from reel-to-reel laser fabrication of fiber sensor for high spatial resolution data harness for NE
- Comprehensive R&D efforts aiming to serve crosscutting I&C technical needs
- Sensors can be deployed for
 - Neutron flux <10¹³ n/cm²/s
 - Temperature < 900C</p>
- I&C electronics, demodulation schemes, and AI algorithms are being developed for NE deployments and potential commercialization.

Summary of accomplishments

- Developed reel-to-reel sensor fabrication system with high fabrication yield.
- Computational efficient sensor demodulation algorithm directly implemented in DSP chips
- Comprehensive high-T testing of fiber sensor array at 900C
- Customized sensor interrogation board for NE I&C system.
- New fiber sensor package method for multi-parameter sensing.
- First ever temperature mapping of nuclear reactor core.
- Machine learning algorithm to mitigate sensor drift and reactor anomaly identification using Bayesian Learner.
- Two US patents and 13 technical publications

Conclusion

Comprehensive R&D efforts from Sensor Devices to Al algorithm.

Aiming Field Deployment in a Near Future

Questions?

Kevin P. Chen: Email: pec9@pitt.edu