



# Nuclear Energy Sensors Database Website

Advanced Sensors and Instrumentation
Annual Webinar

**October 29, 2020** 

Tim Downing, Shan Osborn

Pacific Northwest National Laboratory

## **Project Overview**

#### Goal and Objective:

- Collect, store, and maintain nuclear energy sensor information so that it can be easily accessed and queried on the web.
- Provide mechanisms for the user community to suggest additional sensors and needs/gaps.
- Adapt to new data requirements as needed.

#### Participants 2020

- Software (PNNL): Tim Downing, Shan Osborn, Tyler Willis,
   Claudia Hilderbrand, Jeanne Morgan, Isaac Jo, Corey Jenkins
- <u>Data</u>: Yogi Dayal (INL), David Wootan (PNNL)

#### Schedule

 Version 2.2 deployed. Ongoing operational support, data loading, and development as needed.

## Summary of accomplishments

#### FY20 Deliverables

- Version 2.0 (October 2019)
  - Baseline functional requirements for website met
  - Home page, Sensors page, Use Case page, Needs/Gaps page, Search Page, etc.
  - Initial data load based on ORNL/TM-2016/337 R1 "Assessment of Sensor Technologies for Advanced Reactors"
- Version 2.1 (March 2020)
  - New User Forum
  - Improved wizard for suggesting sensors and needs
  - Miscellaneous fixes/improvements

## Summary of accomplishments

# FY20 Deliverables (Continued)

- Version 2.2 (September 2020)
  - Significant expansion of data fields defined to capture NE sensor data
  - Ongoing loading of newly created data content
  - Site wide improvements to "look and feel" based on User Experience (UX) designs
  - Added User Favorites
  - Miscellaneous fixes/improvements

# **Technology Impact**

#### Nuclear Energy Sensor Website Impacts

- Provides one "go to" searchable database for government, universities, and industry on current sensor technology.
- Provides a database for sensor gaps that need to be filled, including community voting on priority.
- Can be used to build a community via the User Forum and ability to suggest sensors and needs.
- Can be used as a tool for stakeholders in designing and building new nuclear designs and facilities.

## Accomplishments – Website Tour – Home Screen



Welcome to the Nuclear Energy Sensors (NES) website! This website provides a searchable sensors technology database for nuclear applications. It provides information on current state of sensors development, availability, use cases, and also helps identify needs and gaps for sensor development.

#### Introduction

This website was developed as part of the Nuclear Energy Enabling Technologies (NEET) Advanced Sensors and Instrumentation (ASI) program. The objective of this effort is to provide a portal for sensors technologies for nuclear energy, where information on the current state-of-the art sensors is searchable and can be added to as sensor technology advances. The goal is to assist users with (1) identifying commercial and research-grade measurement technologies that may be applicable to specific advanced reactor concepts; (2) identifying sensor technology needs and gaps for one or more advanced reactors, and; (3) providing a moderated approach for users to share advances in sensor technology and connect with subject matter experts.

#### Accomplishments – Website Tour - Sensors



#### Accomplishments – Website Tour – Sensor Detail



# Accomplishments – Website Tour – Sensor Detail

| Assessed<br>Priority | Accuracy                                                                                                                                                                                                                                                  |                 | Detection Sensitivity Neutron Sensitivity 6E-3 +/- 20% (CPS/BWR nv);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Low                  | No significant changes needed for BWR application. For other applications the acuracy at high count rates (>1E6 CPS) can be improved, if needed, by shortening the pulse width by adding a few percent nitrogen to fill gas which increases ion mobility. | View<br>Details | Operating Voltage 350 Volts  Sensitivity to Background  Background noise above discriminator setting is 1 cps at shutdown due to gammas and electronic noise.  Background noise becomes negligable as power increases.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                      |                                                                                                                                                                                                                                                           |                 | Response time Response time at shutdown -10 sec for enough statistical counts; Response time much faster as flux and power is increased and count rate increases.  Measurement Range 1E3 to 1E9 BWR nv; Startup to 1E-3% Reactor Power  Service Life Expectancy 7 Years  Degradation Mechanism(s) No significant sensitivity decrease because of relative small residence time in the reactor at startup power conditions.  10-year Availability Forecast SRM is available, but can be replaced with newly developed Wide-Range Monitor (WRM) which combines the functionality of both SRM and IRM.  References GE and Reuter-Stokes manuals  Available Alternatives WRM  Modularity (Replaceability) Replaceable  Downloads  DETAILS  Sensor Data Base Information - Report 1.11 Rev 0 - BWR SRM 2.pdf |

#### Accomplishments – Website Tour – Suggest Sensor



## Accomplishments – Website Tour – Suggest Sensor



## Accomplishments – Website Tour – Suggest Sensor



# Accomplishments – Website Tour – Needs/Gaps



# Accomplishments – Website Tour – Use Cases



energy.gov/ne

#### Accomplishments – Website Tour - Search



#### Accomplishments – Website Tour – User Forum



# Accomplishments – Website Tour - Register



#### Conclusion

Summary: The Nuclear Energy Sensors Website provides a resource for the Nuclear Energy Industry to maintain searchable information on current technology and help guide R&D for the future. It can be expanded as needed to maintain additional information.

URL: https://nes.energy.gov/

- Questions?
- Tim Downing (tim.downing@pnl.gov) for any additional questions that may not be answered during the webinar.