

Office of **ENERGY EFFICIENCY & RENEWABLE ENERGY** 



#### **T13 - Additive Manufacturing in Wind Turbine Components and Tooling**

Program - Materials, Manufacturing, and Design Innovation Dr. Brian K. Post **Oak Ridge National Laboratory** 5/27/2021









# FY21 Peer Review - Project Overview

#### **Project Summary:**

- Investigate the efficacy of additive manufacturing (AM) as a tool for manufacturing wind turbine components and tooling
- Use AM to reduce manufacturing cost and lifecycle energy
- Identify associated value propositions to accelerate the development and deployment of advanced wind energy technologies.

Project Partners: TPI Composites, Vestas Wind Systems, NREL

#### Project Objective(s) 2019-2020:

- Comparative analysis of the fabrication of a Skeleton Node (SN) using 3 different AM approaches
  - Indirect casting using a printed pattern
  - Direct large scale metal AM printed steel SN
  - Direct composite node using a combined print and reinforce strategy

#### Overall Project Objectives (life of project):

Evaluate and deploy AM processes in manufacturing of wind turbine components and tooling to accelerate design innovation, reduce costs, decrease scraps, and reduce time-to-market

Project Start Year: FY15 Expected Completion Year: FY21 Total expected duration: 6 years

FY19 - FY20 Budget: ORNL \$227K NREL \$196K

Key Project Personnel:

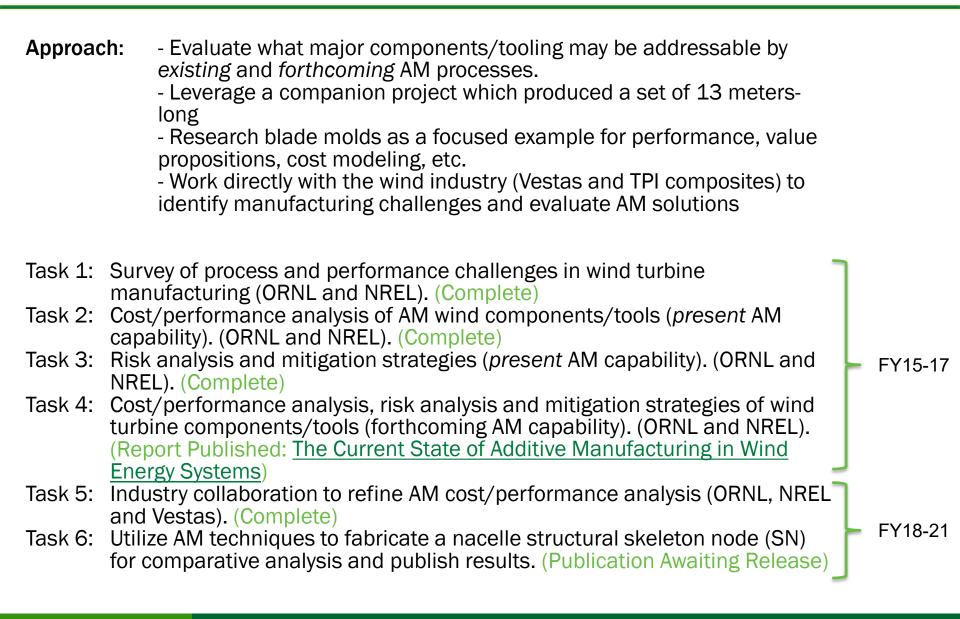
ORNL PI: Brian K. Post NREL PI: Scott Carron

Key DOE Personnel:

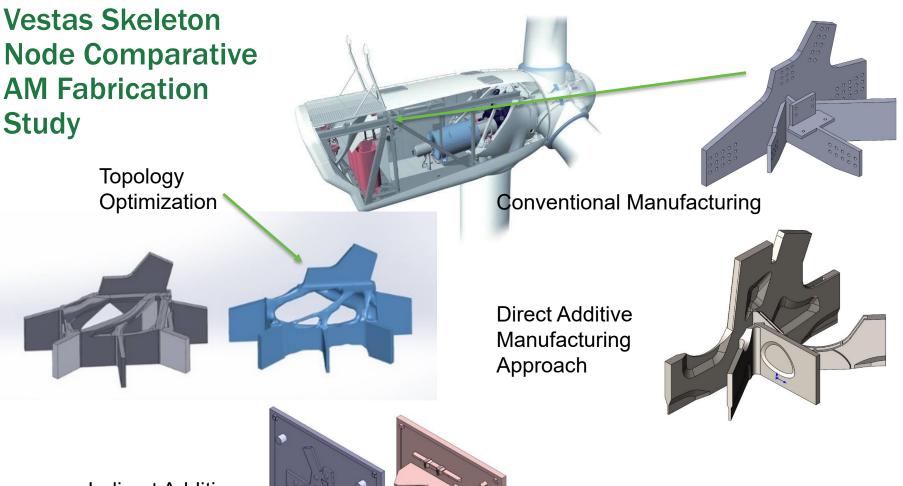
Program Manager: Ben Murray DOE Lead: Michael R. Derby



# **Project Impact**


- Ability to include appropriate AM processes in the manufacturing toolbox of wind turbine components and tooling will accelerate design innovation, reduce costs, decrease scraps, and reduce time-to-market
- Accelerate the deployment of wind and increasing the number of domestic renewable and manufacturing jobs.
- Leverage the successes of the 3D printed blade mold to move beyond tooling to end use parts (indirect to direct manufacturing)

# Potential benefits in applying AM to wind include:


- ✓ Increased design, materials and production location flexibilities
- ✓ Inform manufacturers on production process decisions
- Can impact all wind options land-based, offshore, distributed
- Potential to innovate, reduce cost, first to market
- Potential to transform business models (e.g. digital inventory vs. warehousing)



## **Program Performance – Scope, Schedule, Execution**



### **Program Performance – Accomplishments & Progress (FY19-20)**



Indirect Additive Manufacturing Approach

(a) Top Pattern

(b) Bottom Pattern

(c) Core Box 1

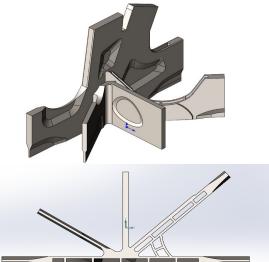
(d) Core Box 2

## **Program Performance – Accomplishments & Progress (FY19-20)**

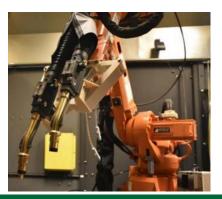
#### **Composite SN**

## **Cast SN**




Hollow core print reinforced with low viscosity thermoset resin



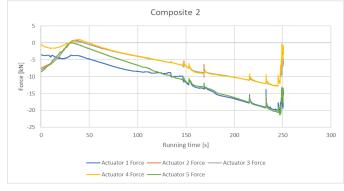




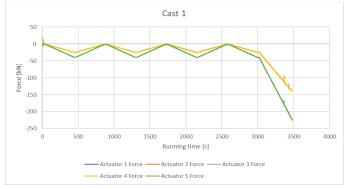

## Directed Energy Deposition (DED) SN



Fabricated using a large-scale AM MIG welding DED system mBAAM



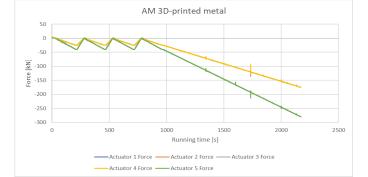

## **Program Performance – Accomplishments & Progress (FY19-20)**


### **SN** Testing



| Order | Name                | Arm     | Design load [kN] |
|-------|---------------------|---------|------------------|
| 1     | Prototype           | <b></b> |                  |
| 2     | Composite_V02_1     | - 1     | 40               |
| 3     | Composite_V02_2     | 2       | 25               |
| 5     | Cast_1              | 3       | 25               |
| 6     | Cast_3              |         | 25               |
| 7     | Cast_2              | 4       | 25               |
| 8     | AM 3D printed Metal | -<br>   | 40               |
| 9     | Reference           |         | 1 70             |



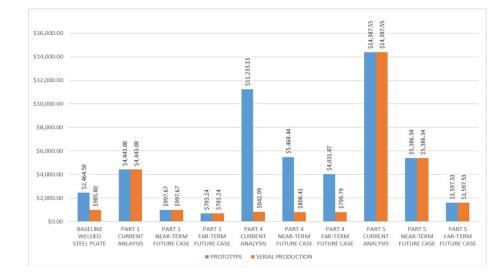




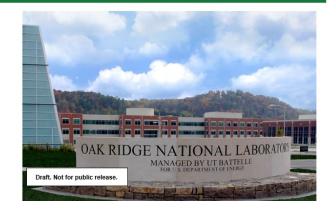



Cast and DED nodes met design loads Composite reached 56% of

design load (higher than expected)







# **Project Performance - Upcoming Activities**

FY21 Work concludes the research program

- Final techno-economic analysis comparing AM vs conventional manufacturing approaches
  - Conventional welding currently remains the most cost-effective manufacturing method to produce a large-scale steel nacelle component of the type considered unless deposition rates increase
  - Of the technologies used the mBAAM produced nodes were the most costcompetitive in terms of lead time, transport cost, and production cost
- Final report is awaiting publication
  - Will be followed by a journal article



A Comparative Study of Direct and Indirect Additive Manufacturing Approaches for the Production of a Wind Energy Component



## **Stakeholder Engagement & Information Sharing**

- Results and findings have been disseminated through open literatures, presentations, and direct communication with industry and stakeholders.
- Special effort to communicate to manufacturing community that is less familiar with opportunities for wind.
  - Manufacturing-centric conferences
  - Mold project included in standard AM slide deck for ORNL
  - Follow on work with multiple industries (aerospace, marine, and naval) using lessons learned from Blade mold success
- Direct partnership with wind Industry (TPI Composites and Vestas)

#### Meetings:

- Solid Freeform Fabrication Conference Austin (Plenary)
- RAPID + TCT Conference
- JEC Knoxville Composites Conference
- SME Smart Manufacturing Seminar Series

#### **Publications:**

ORNL Reports



Awards:

#### FLC Awards

- Technology Focus Award 2018 -Successful Collaboration Accelerates Testing of New Blade Designs
- Partnership Award 2017 National Rotor Testbed: Using Large Scale 3D Printing to Test New Wind Blade Designs



for Technology Transfer

## **Key Takeaways and Closing Remarks**

Project Impact:

 Ability to include appropriate AM processes in the manufacturing toolbox of wind turbine components and tooling will accelerate design innovation, reduce costs, decrease scraps, and reduce time-to-market

Project Performance:

- Design, fabrication, testing and tecno-economic analysis
- Industry partnership to understand and develop solutions to real problems

Stakeholder Engagement:







tpi composites. Vestas.