

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

T03 - Big Adaptive Rotor

Technology RD&T and Resource Characterization - Materials, Manufacturing, and Design Innovation Nick Johnson NREL

August 3rd, 2021

FY21 Peer Review - Project Overview

Project Summary:

- **Challenge:** Turbine and rotor scaling have been the main drivers for continuous levelized-cost-of-energy (LCOE) reductions in wind energy during the past decade. Increased rotor size has led to wind power plants with higher capacity factors and less variability in power production. Transportation logistical issues exist for blades > 70m.
- Approach: National labs will identify and develop innovative technologies outside of the current industry pathway to enable continued rotor scaling at the lowest possible LCOE as compared to conventional technology.
- Project Partners: SNL, NREL, LBNL, ORNL, DNV-GL

Project Objective(s) 2019-2020:

- Advance innovative blade technologies to overcome transportation logistics challenges, and enable the most economical turbines possible
- Assess the historical trends and value of low-specific-power turbines to inform the direction of the project
- Develop requisite modeling capability and complete a detailed design and techno-economic analysis
- Determine R&D pathways for alternative transportation methods
- Assess the impact of optimized carbon fiber materials to enable large lightweight structures

Overall Project Objectives (life of project):

 Develop boundary pushing technologies to reduce the cost of energy and maximize deployment of wind energy. Project Start Year: 2018 Expected Completion Year: FY2021 Total expected duration: 3 years

FY19 - FY20 Budget: \$3,492,411

Key Project Personnel: Nick Johnson – NREL Josh Paquette (co-PI)– SNL Mark Bolinger – LBNL Bob Norris – ORNL

Key DOE Personnel: Ben Hallissy, Mike Derby, Ben Murray, Mike Robinson

Project Impact

Issue

- Trend between low LCOE and low-specific-power
- Scaling trends challenged by technological and logistical transportation barriers.

Approach

- Determined R&D pathways for transportation challenges
- Identified innovative technologies beyond current industry activity (downwind, highly flexible rail transportable blades, active aerodynamic devices, inflatable blade, bi-wing blade)
- Identified challenges for innovative technologies
- Advanced the state-of-the-art for the innovative concepts
- Developed modeling capability
- Conducted techno-economic analysis and detailed design
- Matured the optimized carbon fiber technology Result
- Designs with lower LCOE than conventional solutions

BAR designs show LCOE reductions compared to conventional industry designs

Advanced materials reduce LCOE

Key Milestones and Deliverables from **2019**:

- Historical trends for turbine size, specific power, and hub height
- Value of low-specific-power turbines
- 20 innovative concepts evaluated
- Key technical challenges identified
- Modeling gaps identified and upgrades implemented
- Development of optimized carbon fiber

Vortex code implemented in OpenFAST

Optimized carbon fiber

Key Milestones and Deliverables from **2020**:

- Rail-transport co-design tool in WISDEM
- Active aerodynamic device and blade co-design implementation and analysis
- Detailed designs and initial techno-economic analysis of downwind and highly flexible rail-transportable blades
- Initial design and techno-economic analysis of the inflatable blade and biwing rotor concepts

Task		FY19				FY20				FY21	
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	
Task 1: Trends and Impact Analysis											
Trends Analysis for Low-SP Turbines											
Value of Low-SP Turbines											
Geospatial Analysis						•					
Scaling Analysis											
Task 2: Blade Transport Cost Reduction											
Rail Transportable Blade Study											
Task 3: Innovative Technology Catalog											
Complete Quantative Analysis											
Down-select to 5 Technologies											
Identification of Technology Challenges											
Submit Technical Report and Summary											
Task 4: Detailed Design and Analysis											
Modeling Gaps Analysis											
Complete Model Integration											
Co-Design of Active Aero and Blade											
Detailed Design of Downwind											
Detailed Design of Highly Flexible Blade											
Initial Design of Inflatable and Bi-Wing											
Complete Techno-economic Analysis											
Initial Vortex Validation											
Task 5: Optimized Carbon Fiber											
Analyze and summarize findings of materials											

Project Performance - Upcoming Activities

- BAR Phase I concluded March 31, 2021
- Work to be completed in FY21:
 - Complete publications on findings from detailed design studies
 - Complete co-design framework for distributed aerodynamic controls
 - Complete initial verification and validation of newly implemented vortex code
 - Identify technical challenges to be addressed in Phase II
 - Complete work plan and proposal for Phase II
 - Complete final report

Stakeholder Engagement & Information Sharing

- 13 publications between 2019 and 2020
- Presented at: AWEA, WESC 2019, NAWEA 2019, TORQUE 2020
- Hosted 3 webinars for dissemination of Task 1 and 2 results
- Hosted 5 model trainings
- Regular meetings with the industrial advisory panel
 - Members represent GE, SGRE, TPI composites, DNV-GL, DTU, TUM, and other industry experts.

Key Takeaways and Closing Remarks

Project Impact:

- Identified innovative concepts and R&D challenges to reduce LCOE
- Successfully shown that low-specific-power turbines have value beyond LCOE
- There are pathways to continue this industry trend without segmented blades
- Developed advanced computational design and optimization tools that were publicly released

Project Performance:

 Project was successful in completing major milestones on time and on budget

Stakeholder Engagement:

- Industry advisory panel
- Publications and conference presentations

