

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

T06 - 3D Printed Core Structures for Wind Turbine Blades

Program: Materials, Manufacturing, and Design Innovation Presenter Name: Scott Carron Presenter Organization: NREL

Date August 3rd 2021

FY21 Peer Review - Project Overview

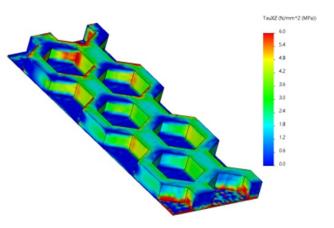
Project Summary:

- The challenge is to develop longer, lighter, and lower cost wind turbine blades for the wind industry to reduce the Levelized Cost of Energy (LCOE) and increase deployment.
- The project addresses this challenge using the state-of-the-art in advanced manufacturing technologies.
- The project focuses on utilizing 3D printing technologies and topology optimization to develop large-scale 3D printed blade core structures for a 13m blade.
- The project will leverage cutting edge research and emerging technologies to develop 3D printed blade cores with the performance of aerospace honeycomb and the cost of balsa.
- The project is comprised of a world-class team of scientists and researchers at NREL with expertise in blade design, and ORNL with expertise in large-scale additive manufacturing.

Project Objective(s) 2019-2020:

- Develop the technical foundation to ensure technically robust 3D printed core solutions are developed throughout the conceptual, preliminary, and detailed design phases of the project.
- Document the technical foundation as a set of Technical Specifications and Requirements consisting of manufacturing design guidelines, material testing and characterization processes, material design properties, design load cases, and structural requirements.
- Conduct a project review to ensure the project has the tools, data, methodology, and processes in place to begin the conceptual design phase.

Overall Project Objectives (life of project):


- Develop a robust set of technical requirements to ensure the structural integrity of blade core designs.
- Advance novel 3D printed blade core structural designs through rigorous conceptual, preliminary, and detailed design phases.
- Validate the final 3D printed core design through a full-scale build and test program.
- Deliver an extremely lightweight 3D printed blade core structure that outperforms traditional core structures such as balsa and foam on a strength, stiffness, mass, cost and durability basis.

Project Start Year: [2020] Expected Completion Year: FY [2023] Total expected duration: [4] years

FY19 - FY20 Budget: \$792,013 (TOTAL) \$434,013 (NREL) \$358,000 (ORNL)

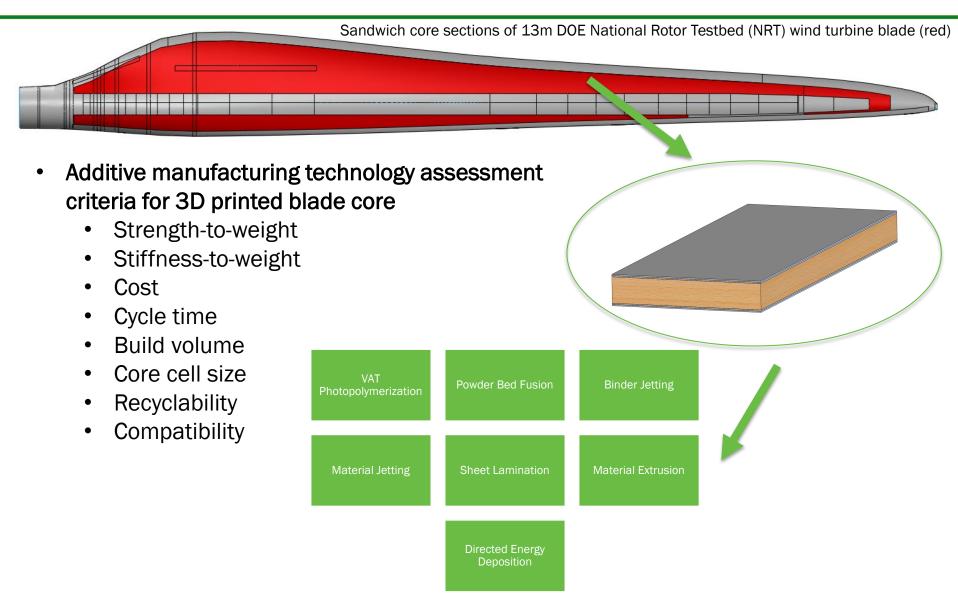
Key Project Personnel: Scott Carron (NREL) Brian Post (ORNL)

Key DOE Personnel: Benjamin Murray, Mike Derby

Project Impact

• Benefits to the wind industry.

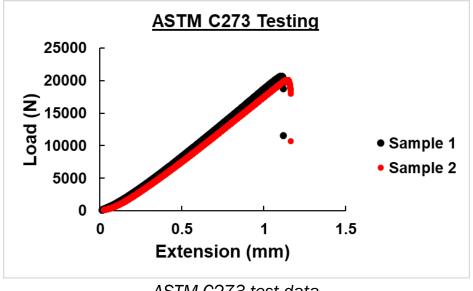
- Domestic manufacturing
- Domestically sourced materials
- Reduced transportation costs
- Increased opportunities for recyclability
- Higher performance blade structures
- Research needed.
 - Aerospace is driving high cost, small-scale, long cycle time, high strength.
 - Tooling is driving low cost, large-scale, long cycle time, low strength.
 - Wind blades require low cost, large-scale, short cycle time, high strength.
- Project impact.
 - 3D printing material property data
 - 3D printing design methods
 - Topology optimized blade structures
 - Next generation blade designs
 - Advanced structural design and validation methods


Program Performance – Scope, Schedule, Execution

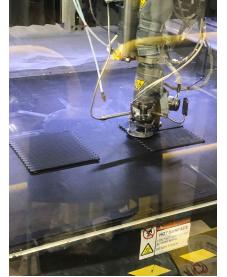
- Phase 1 Technical Specifications and Requirements Development (FY 2020)
 - Additive Manufacturing Guidelines
 - Additive Manufacturing Materials Database
 - Additive Material Testing and Characterization
 - Additive Material Design Properties
 - Design Load Cases
 - Structural Requirements
 - Project Review and Go/No-Go Decision Gate
- Phase 2 Conceptual Design (FY2021)
- Phase 3 Preliminary Design (FY2021/FY2022)
- Phase 4 Detailed Design (FY2022/FY2023)
- Phase 5 Blade Manufacture (FY2023)
- Phase 6 Blade Validation (FY2023)

Additive Manufacturing Design Guidelines

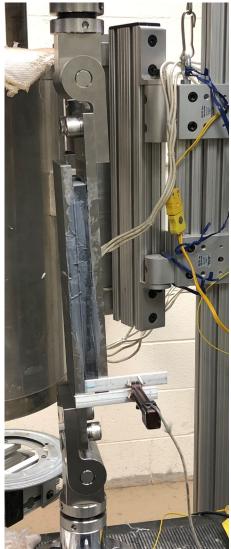
7 Families of Additive Manufacturing Technologies (ASTM F2792)


Additive Manufacturing Materials Database

Material Characterization


- Shear strength
- Shear modulus
- Tensile strength
- Tensile modulus
- Compressive strength
- Compressive modulus
- Density

Material Testing


- ASTM C273 shear properties
- ASTM C393 shear properties
- ASTM C297 tensile properties
- ASTM C365 compressive Properties
- ASTM C271 density

ASTM C273 test data

3D printed coupons

ASTM C273 test set-up.

Structural Requirements

Core Design Options

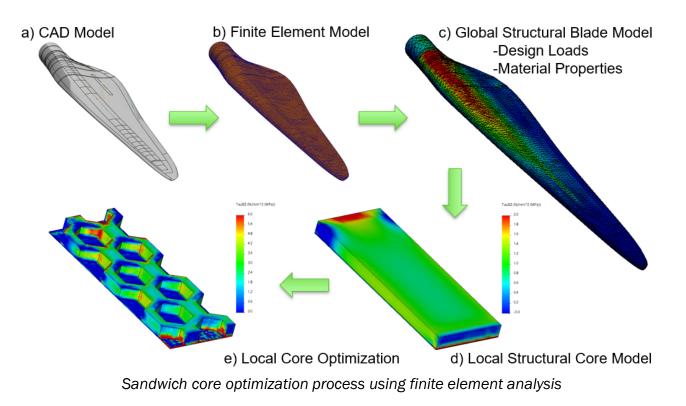
- Balsa
- Cellular Foam
- Honeycomb
- Corrugated
- Lattice
- Stiffened Panel

Core Failure Criteria

- Face sheet failure
- Core shear failure
- General buckling
- Face wrinkling
- Shear crimping
- Face dimpling

Blade Surface

- 13m DOE NRT blade
- 3D printed 13m blade mold


Core Design Targets

3D Printed Core Design Targets		
Shear Strength (MPa) / Density (kg/m3)	Compressive Modulus (MPa)/ Density (kg/m3)	Cost (\$/kg) / Density (kg/m3)
0.02	23.45	0.12

Note: Targets based on 150 kg/m3 end grain balsa material properties and 2020 costs.

Design Loads and Structural Optimization

- Design Load Cases
 - Edgewise Ultimate Limit State (ULS)
 - Flapwise Ultimate Limit State (ULS)
 - Maximum Resultant Ultimate Limit State (ULS)
 - Maximum Tip Deflection

Project Performance - Upcoming Activities

FY2021:

- Complete Technical Specifications and Requirements (partially delayed due to COVID-19 impact)
- Project Review (delayed due to COVID-19 impact)
- Begin Conceptual Design Phase
 - Conceptual design (two-dimensional core geometries)
 - Material testing and characterization (conceptual design support)
 - Additive manufacturing (3D printing of core designs)

FY2022 - FY2023:

- Conceptual Design Review
- Preliminary Design Phase
 - Conceptual design (three-dimensional core geometries)
 - Material testing and characterization (conceptual design support)
 - Additive manufacturing (3D printing of core designs)
- Detailed Design Phase
 - Final down select and detailed structural analysis
 - Validate final design through testing and characterization
- Blade Manufacturing Phase
 - 3D print final core design
 - Manufacture full-scale 13m demonstrator blade
- Blade Validation Phase
 - Perform full-scale static testing

Stakeholder Engagement & Information Sharing

Engagement Strategy

- The project is currently at a Technology Readiness Level (TRL) of 2 and intends to increase industry engagement as the TRL advances from early-stage to mid-stage (TRL 4-5).
- Industry engagement will include the additive manufacturing machine tool industry and wind turbine blade manufacturing industry.
- The engagement strategy will leverage the 205 industry and 54 university partners associated with ORNL's Manufacturing Demonstration Facility (MDF), and NREL's partnerships and relationships with all major wind manufacturers.

Commercialization Pathway

• Commercialization pathways will be pursued as the TRL advances from early-stage to mid-stage.

Communications and Outreach Strategy

- Wind Energy and Additive Manufacturing Industry Conferences (e.g., JEC World, AWEA Wind Power, Sandia Blade Workshop, Torque, IMTS, Rapid + TCT)
- Industry Magazine Publications (e.g., Composites World, Additive Manufacturing)
- Social media channels (e.g., LinkedIn, DOE WETO news)
- Journal Publications (e.g., AIAA, Additive Manufacturing)
- NREL and ORNL technical publications