

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Activity Area Overview Presentation: Grid Integration

Jian Fu, Program Lead

August 2-5, 2021

FY21 Peer Review – Activity Overview

Activity Summary:

- <u>Challenges and opportunities</u>:
 - o Complexity in transmission planning and permitting hinders deployment
 - Increased wind requires grid flexibility, reliability support, storage, and hybrid systems integration
 - Wind growth can offer an array of grid services
 - Digitization increases risk of cyberattack risk
- <u>R&D priorities</u>
 - Transmission access
 - Grid services
 - Grid reliability and resilience support
 - Wind Cybersecurity
- Key Activity partners:
 - o NR Can, ESIG, GE, NOAA, WindSim, BPA, Universities, and more
 - Other EERE and DOE offices through cross-cutting R&D initiative

Activity Objective(s) 2019-2020:

- Understand the benefit of interregional transmission and international collaboration for future grid with high levels of renewable resources.
- Advance the provision of grid services for reliability and resilience
- Analyze grid stability with IBRs using impendence measurement
- Increase transmission utilization through enhanced DLR
- Identify challenges and opportunities for wind cybersecurity

Overall Activity Objectives (life of Activity):

• Enable cost-effective, reliable, resilient, and secure grid with large-scale wind deployment

FY19 - FY20 Budget Under Review (Labs): \$10,611,285

Current budget (FY21): \$6,786,650

Number of projects under peer review: 10

Projects Under Review

R&D Priorities	Project Title	Performer
Transmission Adequacy and Asset Utilization	E03 – North American Renewable Integration Study	NREL
	E04 – Continental-Scale Transmission Modeling Methods for Grid Integration Analysis	NREL
	E05 – Enhancing Reliable and Accurate Weather Forecasts for Increased Grid Reliability for Wind with Dynamic Line Rating	INL
Provision of Grid Services	E06 – Atmosphere to Electrons to Grid (A2e2G)	NREL
	E07 – Wind Power as Virtual Synchronous Generation (WindVSG)	NREL
Grid Reliability and Resilience Support	E08 – Advanced Modeling, Dynamic Stability Analysis, and Mitigation of Control Interactions in Wind Power Plants	NREL
	E11 – North American Energy Resiliency Model (NAERM)	NREL
Wind Cybersecurity	E09 – Cybersecurity Roadmap for Wind	INL, SNL, NREL
	E10 – Hardening Wind Energy Systems from Cyber Threats	SNL, INL
All	E12 – Wind Grid Integration Stakeholder Engagement	NREL

Transmission Adequacy and Asset Utilization

Key Challenges

- Complexity in transmission planning and permitting hinders wind deployment.
- Existing transmission assets are not fully utilized.

¹ National Renewable Energy Labo ² GE Energy ³ Evolved Energy Research

Grid Reliability and Resilience Support

Key Challenges

 Maintaining and Increasing grid reliability and resilience with large deployment of inverterbased resources are challenging.

Provision of Grid Services

Market Participation **Key Challenges** Continued research is needed to advance Predict power output Bid into ٠ Predict wind of wind farm market provision of grid services from wind. New technologies like grid forming ٠ control are promising to support high IBR grid. Actual wind conditions Decide control inputs for wind farm to get what grid needs forecasts/estimates **Real-Time Control**

Wind Cybersecurity

Key Challenges

- Cyber activities targeting energy sector are more frequent and sophisticated.
- There are gaps in identifying wind specific needs for cybersecurity, especially in Operational Technology environment.

Activity Accomplishments & Progress

- Completed North American Renewable Integration Study and Interconnection Seams Study
- Developed uncertainty assessment tools for dynamic line rating
- Led demonstrations that prove wind energy can provide a full array of essential grid services, in collaboration with industry, regulators, national laboratories, and a major electric utility
- Developed a theoretical basis of grid-forming operation and services by wind power and created grid forming models of Type 3 and 4 wind power plants
- Designed wind plant control that merges forecasting tools with aerodynamic and economic models to maximize a wind plant's value streams for energy and ancillary services
- Developed impedance-based testing, modeling, and analytical tools to evaluate the stability impacts of wind generation
- Designed, developed, and conducted modeling scenarios and sensitivities of a Polar Vortex use case
- Published wind cybersecurity roadmap.
- Established co-simulation environment that can fully assess the effectiveness of cybersecurity defense.
- Numerous publications, presentations, and extensive stakeholder engagement

Future Work (FY21 and Beyond)

