Co-Design of HVAC Systems and Controls for Energy-Flexible Buildings

Pacific Northwest National Laboratory PI: Veronica Adetola <u>veronica.adetola@pnnl.gov</u>

Presenter: Arnab Bhattacharya

Project Summary

<u>Timeline</u>

Start date: 10/01/2019 Planned end date: 09/30/2021

Key Milestones

- ✓ Document current design practice for building HVAC and control retrofit (met 12/2019)
- ✓ Develop and implement scalable co-design optimization methodology under uncertainty (met 12/2020)
- ✓ Implement and demonstrate co-design optimization methodology for the integrated system (met 06/2021)

Budget

Total Project \$: 700K

- DOE: \$700K
- Cost Share: \$0

Key Partners

Paul Ehrlich, Building Intelligence Group

Project Outcomes

- 1. Scalable co-design framework and methodology for integrated building HVAC systems and onsite energy assets
- 2. Templating higher-fidelity system level models for design optimization
- 3. Demonstrated co-design benefits for chiller plant and community energy system use-cases

Team

U.S. DEPARTMENT OF

Amir Roth Emerging Technologies

Veronica Adetola

Soumya Vasisht

Arnab Bhattacharya

Sen Huang

Draguna Vrabie

Himanshu Sharna

Paul Ehrlich

Current Design Practice and Challenges

- Current HVAC design practice is sequential or iterative at best
- Modeling step is often skipped; when done it is primarily for equipment sizing
- Little effort given to control design
- Sub-optimal system designs and increased up-front costs (e.g., over-sized equipment, post-deployment changes)

Historic Green Village: Mixed-Use Community in Florida

- Buildings are becoming more complex; integrated building systems with significant intersystem couplings that are less understood
- Increased need to design and operate buildings for multiple objectives e.g., thermal comfort, energy efficiency, energy decarbonization, demand flexibility in support of grid operation and building resilience
- Limited tools for incorporating and evaluating control options early in the project design cycle

Approach: Co-design

Survey questionnaire and telephone interview with building research and industry experts

- Interviewees agree on the control co-design potential to realize added value.
- Unified agreement on the need to quantify co-design benefits

Features to Enhance Scalability and Accuracy of Codesign

	Approach	Description
	Multi-fidelity models	Effectively utilize data and models of varying fidelity. Leverage complementary research efforts (e.g., BEM - Spawn of E+, Control specifications and sequences – Guidelines 13/36)
	Simulation-based Bayesian Optimization	Machine-learning-based optimization, no analytical models required, intelligent sampling
	Uncertainty quantification and integration	Expand beyond typical design days, Incorporate uncertainties in modeling and exogeneous inputs, and validation over annual operational scenarios,

Approach : Iterative Framework and Elements

Automated machine learning-based co-design framework leveraging advances in multi-fidelity methods, sampling, and probabilistic surrogate models to identify high-quality designs without any "human-in-the-loop"

Progress: Flexible Modeling

Progress: Chilled Water Plant Retrofit Use-Case

- Flexible high fidelity chiller plant model
- Combination of chillers with different sizes and functionalities
- Co-simulation between
 EnergyPlus and Modelica

Design objective

 Minimize chiller capital cost, energy and operational cost, peak-power demand and penalty cost for cooling demand violation, over a set of representative design days

Design variables

- System design: number of chillers in the plant and capacity of each chiller
- Control design: chiller staging and sequencing switching (on/off) temperature thresholds

Progress: Chilled Water Plant Co-design Results

Co-designed system results in capital cost savings (\$0.7M), annual energy savings (33%), peak-load reduction (56%) and improved thermal comfort.

Annual Performance

Design	Baseline Design	Co-design (2 chillers)			
Capacities (kW)	2184, 2184	531, 2799			
Switching Thresholds	0.95	0.95			
Energy (MWh)	1286.85	855.38			
Peak Load (kW)	1241.59	539.77			
Capital Cost (\$)	1.69 million	0.99 million			

Thermal comfort

Day	Design	Maximum discomfort (°C)				
100	Baseline	2.053				
190	Co-design (2 chillers)	0.543				
250	Baseline	0.002				
250	Co-design (2 chillers)	0.001				

Progress: Multi-Buildings and Community Energy Systems

Mixed-Community Use-Case: Historic Green Village (HGV), Anna Maria Island, Florida

Co-design model: Validated with data from the HGV

Co-design scenario: Heat recovery via ground source heat pump to preheat domestic hot water

Design Objectives

Minimize Initial investment cost of DHW + HPs + Battery, total energy consumption, thermal imbalance of DHW and space conditioning loads, battery SOH (~# of cycles)

Progress: Multi-Buildings and Community Energy Systems

Co-design led to capital cost savings (~20%), annual energy savings (>3 MWh), improved cooling demand satisfaction, and reduced battery degradation (~30%)

Variable Type	Variable Name	Baseline Design	Co-design	
	Boiler Capacity	350 kW	250 kW	
Plant Design	Tank Capacity	3 m ³	4 m ³	
	Battery Capacity	120 kWh	100 kWh	
	Temperature Thresholds	25⁰C, 28.88⁰C	23.46⁰C, 26.99⁰C	
Control Design	Min SOC, Max SOC	0.10, 0.90	0.27, 0.83	
Control Design	Battery charge and discharge rates	200 kW, -400 kW	100 kW, -400 kW	
	Time window for battery discharge	7 am, 6 pm	12 pm, 7 pm	

Capital Investment	Baseline Design	Co-design	Control Cost	Baseline Design	Co-design
Boiler	\$42,928	\$32,057	Annual DHW Energy Consumption	13.16 MWh	13.15 MWh
Battery	\$43,400	\$36,200	Annual HP Energy Consumption	153.62 MWh	150.56 MWh
Hot Water Tank	\$743	\$924	Max supply-temperature deviation	0.95°C	0.67⁰C
Total Cost	\$87,071	\$69,181	Battery State of Health	292	205

Benefits and Impact

- Improved design can reduce up-front project costs while meeting or exceeding energy efficiency goals
- Identification of cheaper, smarter design solutions will accelerate market adoption and societal impacts
- Codesign benefits apply to all building types; both retrofit and new building constructions
 - U.S. retrofit market is valued at \$124.2 billion (2020) and expected to grow to \$182.9 billion by 2027
 - Potential of over \$1 trillion in energy savings over a 10-year period
- Use of high-fidelity modeling can readily be used as a system operations tool (i.e., digital twin) to make
 operational decisions for demand flexibility

Mid- to Long-term Impact

ET Programmatic Alignment

- Expand utilization and effectiveness of building energy models
- Connections to other BTO related work including OBC and support for semantic information (ASHRAE 223P and 231P)
- Exploratory work towards the identified long-term sensors and control R & D opportunity

Stakeholder Engagement

Early-Stage Project

November 2019 – January 2020:

- Questionnaire Survey and telephone interview with building experts from Research and Industry
- Engaged on current design practice, value proposition and use-case selection

May 2021

Raymond Kaiser, LEED and sustainability consultant for HGV design project

Integrated Building Design **ASHRAE Technical Committee 7.1**

Broad dissemination of project and its outcomes

- ASHRAE Winter Conference, 2021
- American Control Conference, 2021
- Trade magazine articles Project Haystack Connection and Engineered Systems
- Control Co-Design of Commercial Building Chiller Plant using Bayesian Optimization." Energy and Buildings, 2021.

CONTROLS CONUNDRUM

ES FEATURE

Co-Design a New Process to Improve Control System **Design and Delivery**

BUILDING INTELLIGENCE

"The vision of grid-interactive energy-efficient buildings will be realized through effective integration of energy savings and automated demand response technologies enabled by advanced building energy management systems with two-way grid interacting capabilities."

Remaining Project Work

1. Complete uncertainty analysis and integration for robust HGV co-design use-case

- 2. Complete evaluation of additional HGV configurations
 - Ground source HP loop complemented with cooling tower for heat rejection
 - Domestic hot water subsystem alternatives (e.g., replace thermal solar with additional PV panels)

Concluding Remarks

Achieved project outcomes

- Developed of a scalable co-design optimization framework and methodology for integrated building HVAC systems and onsite energy assets
- Developed flexible higher-fidelity, system-level, modeling templates for co-design experimentation
- Demonstrated co-design application and benefits for two retrofit use-cases
- Showed that co-design results in lower capital cost and operational cost (improved energy efficiency and thermal comfort)

This proof-of concept project paves the way for future work:

- A series of standards, easy-to-use tools and templates for both co-design and verification, allowing designers to readily apply control co-design methodology
- Framework for new and innovative projects (e.g., energy decarbonization) that doesn't readily fit into templates
- Workforce training

Thank You

Pacific Northwest National Laboratory PI: Veronica Adetola veronica.adetola@pnnl.gov

REFERENCE SLIDES

Publications and Presentations

- 1. A. Bhattacharya, Vasisht S.S., S. Huang, H. Sharma, V.A. Adetola, and D.L. Vrabie. "Control Co-Design of Commercial Building Chiller Plant using Bayesian Optimization." Energy and Buildings, 2021 <u>https://doi.org/10.1016/j.enbuild.2021.111077</u>
- 2. Vasisht S.S., A. Bhattacharya, S. Huang, H. Sharma, V.A. Adetola, and D.L. Vrabie. "Co-Design of Commercial Building HVAC using Bayesian Optimization. IEEE American Control Conference, June 2021.
- 3. V. Adetola. "Better Together: Co-design for the Win". ASHRAE Winter Conference Seminar 10. Feb 9, 2021.
- 4. V. Adetola and P. Ehrlich. "Co-design a new process to improve control system design and delivery." *Haystack Connections*. Issue 8, Fall 2020. pages 42-46. PNNL-SA-158438
- V. Adetola and P. Ehrlich. Solving the built environment's controls conundrum. Engineered Systems magazine. November 2020. <u>https://digital.bnpmedia.com/publication/?m=11646&i=678234&p=26&oly_enc_id=9775D</u> <u>1291356A9T</u>

Project Budget: \$700k Variances: None Cost to Date: \$625K. Additional Funding: None planned

Budget History							
10/1/2019 – FY 2020 (past)		FY 2021 - 9 (cur	9/30/2021 rent)	FY 2022 (planned)			
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share		
\$450K	\$0	\$250K	\$0	\$0	\$ 0		

Project Plan and Schedule

Project Schedule									
Project Start: 10/1/2019		Completed Work							
Projected End: 09/30/2021		Active Task (in progress work)							
	•	Mileston	e/Deliver	able (Orig	inally Pla	nned)			
	•	Mileston	e/Deliver	able (Actu	ual)				
		FY2020 FY2021							
Task	Q1 (Oct- Dec)	Q2 (Jan- Mar)	Q3 (Apr- Jun)	Q4 (Jul- Sep)	Q1 (Oct- Dec)	Q2 (Jan- Mar)	Q3 (Apr- Jun)	Q4 (Jul- Sep)	
Past Work									
Q1 Milestone: Document current design practice for building HVAC and control retrofit									
Q2 Milestone: Specify retrofit case study									
Q3 Milestone: Complete building equipment and optimization models									
Q4 Milestone: Co-design formulation and optimization algorithms are specified and implemented for a building HVAC retrofit									
Q1 Milestone: Co-design optimization methodology under uncertainty developed									
Q2 Milestone: Co-design optimization methodology implemented for integrated system use-case (HVAC, Storage and Local generation)									
Q3 Milestone: Co-design approach and improved performance demonstarted for integrated system -use case									
Current/Future Work									
Q4 Milestone: Disseminate technical and economic benefits of Co-design								•	