PNNL-29118

Electric Grid Blackstart: Trends, Challenges, and Opportunities

PNNL Technical Report October 2020

 Jeff Dagle, PE

 Chief Electrical Engineer

 Electricity Security Group / Resilience Team

 Pacific Northwest National Laboratory

PNNL is operated by Battelle for the U.S. Department of Energy

Acknowledgements

DOE-CESER Program Manager

John Ostrich

Study Authors

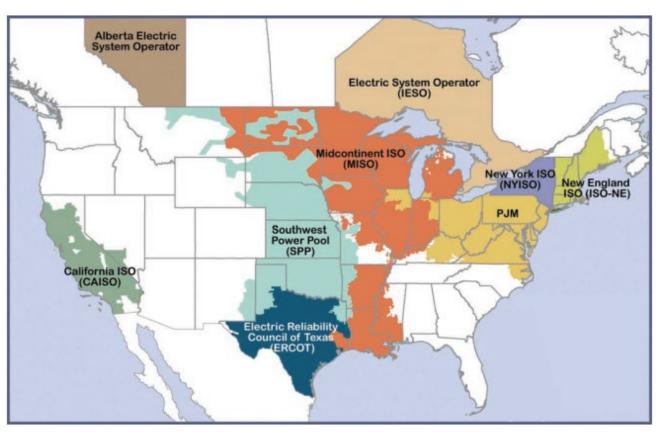
- James G. O'Brien
- Michael Cassiadoro¹
- Tamara Becejac
- Gerald B. Sheble²
- James Follum
- Urmila Agrawal
- Eric Andersen
- Md Touhiduzzaman
- Jeffery Dagle

¹Total Reliability Solutions, LLC ²Energy and Power Management Technology, Inc.

2

- The purpose of this technical report was to examine methods of system recovery from major outages
- If the blackout results in a complete power outage within the interconnection (which is extremely rare), a "blackstart" of the power system is required
 - Otherwise, the restoration process is greatly facilitated by connecting transmission to the un-outaged portions of the grid
- The blackstart process includes consideration of power generation that is able to start without access to offsite power
 - And includes transmission pathways between those sources of power and additional generation facilities
 - All while maintaining balance between generation and critical load
- Blackstart plans are carefully reviewed and regularly drilled
 - But need to be flexible based on real-time conditions and the nature of the damage
- This report provides a summary of the state-of-the-art and the potential shift in operational methodologies due to technological advances

Blackstart Practices and Considerations


- Blackstart resources requirements
- Suitability of various generation sources
 - Hydropower
 - Simple and combined cycle gas units
 - Coal
 - Diesel
 - Nuclear
 - Wind
 - Photovoltaic
 - Storage
- Transmission requirements
 - Cranking paths
 - Frequency and voltage control

Functional Entity Roles and Responsibilities

- NERC Standard EOP-005-3: System Restoration from Blackstart Resources
- NERC Standard EOP-006-3: System Restoration Coordination
- Reliability through markets (blackstart as a service)

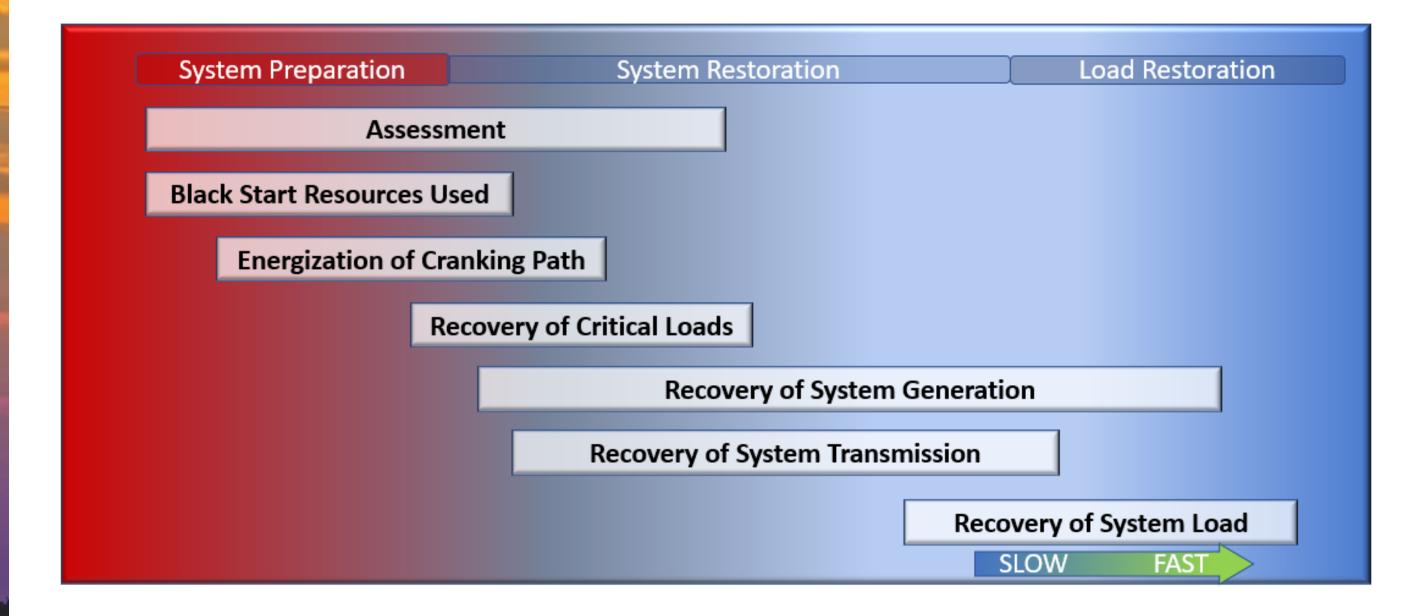
RTO and ISO service areas in the United States and Canada

Blackstart Restoration Strategies and Approach

Restoration strategy:

- Analyze
- Stabilize
- Restore
- Return to normal operation

Restoration priorities:

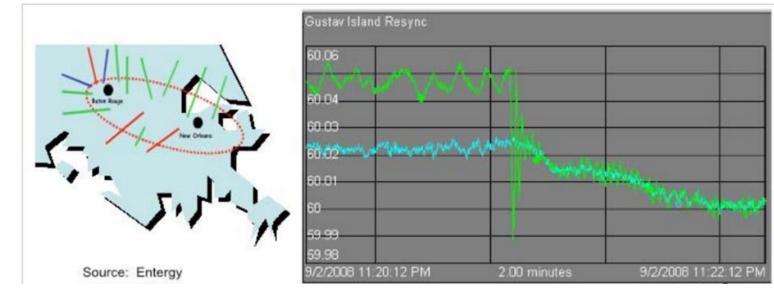

- Energize transmission facilities (e.g., cranking paths)
- Provide offsite power to nuclear power plants
- Provide start-up power to generation stations that can aid in system restoration
- Restore loads that are critical for substations to support infrastructure
- Return system to normal operations
 - When the choice of the next load to be restored is not driven by the need to control frequency or voltage

6

Blackstart Restoration Phases

Opportunities and Challenges

- Changes in grid generation portfolio
 - Renewable generation currently provides ~20% of the total power demand in the US and is expected to dramatically increase in the next few decades
 - The variability of renewable generation requires associated power plants that can provide balancing reserves
 - \checkmark The largest source of this is natural gas
 - Retirements of coal and nuclear power plants have little effect on blackstart capability, as these units are typically not blackstart capable
- Energy storage
 - With renewable generation, it is possible that the time of the day that the maximum power produced does not directly coincide with the largest power consumption

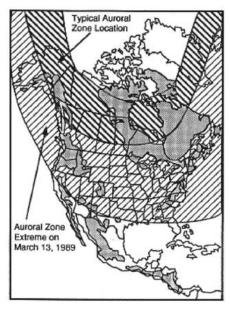

 \checkmark Storage can help bridge that gap

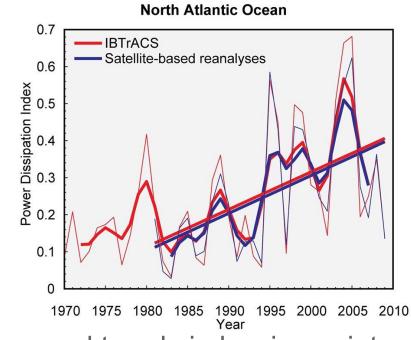
Energy storage, given the proper power electronics, has the potential to become a black-start resource

Opportunities and Challenges (cont.)

- Advanced monitoring and metering (synchrophasors)
 - Time-synchronized measurements are made possible with the introduction of synchrophasor technology
 - The analysis that can be performed may include:
 - \checkmark Islanding detection indicate when a portion of the grid may have become disconnected from the rest of the system
 - \checkmark Analyze cause and resulting system conditions if the events that led to the event are known, it gives a much clearer path for recovery
 - ✓ Assess post event system health

Entergy system islanding during Hurricane Gustav in Louisiana (2008)


Opportunities and Challenges (cont.)


- Advanced distribution management systems (ADMS)
 - Allow for distributed resources to energize the local area, resulting in a kind of "microgrid"
 - Can recover the distribution system much faster in an intelligent way
- Transactive controls
 - Enabling a "market" for consumer resources for more active management of load and other distributed energy resources during the recovery phase
 - \checkmark "Curtail" load during the recovery where certain loads in the home would not be recovered immediately (e.g. water heaters)
 - \checkmark Enable electric cars to act as a battery storage device
 - ✓ Utilization of DER as "blackstart resources"

Emerging Threats

- Cybersecurity
 - As the lines of operational technology (OT) and information technology (IT) become crossed and blurred (especially at the distribution level), there is a cyber-exposure of previously isolated industrial control systems
- Climate Change
 - There has been a marked increase of both magnitude and occurrences of hurricanes in the north Atlantic ocean over the past 40 years
- Geomagnetic Disturbances (GMD)
 - And Electromagnetic Pulse (EMP) threats

Observed trends in hurricane intensity

GMD event on March 13, 1989 impacting the Quebec power grid

Unconventional Blackstart Methods

- Battery used for station service in order to start up a natural gas plant
 - Demonstrated in California
- The High voltage direct current (HVDC) voltage source converter (VSC)
 - Can provide real and reactive power separately
 - VSC is inherently configured for blackstart
 - \checkmark This has been recently demonstrated in the Baltic States

as plant rter (VSC)

Recommendations

- Increase Resiliency
 - Identify critical power system components to determine optimal locations where hardening of components could improve system reliability and blackstart
- Improve system modeling
 - Determine how system models can be improved to perform more extensive studies of blackstart capability and system restoration plans
- Perform more extensive studies
 - Perform additional studies to determine best approaches to system restoration given more complex scenarios (e.g., use of DER to increase system resiliency and aid in restoration)
- Coordinate emergency response with natural gas industry
 - Identify interdependencies that can impact blackstart capability, conduct joint studies, and establish processes to communicate information and coordinate during major events

Recommendations (cont.)

- Enhance training activities
 - Consider how electric industry training activities can be improved upon to provide a deeper knowledge of how power system operating characteristics are changing and how those changes may impact blackstart capability and system restoration
- Perform outreach
 - Consider establishing programs to work with other parties that own or operate generation, transmission or distribution facilities that could be involved with system restoration activities
- Capture and share industry best practices
 - Curating, enhancing, and disseminating best practices to key North American stakeholders

Thank you

