



# Waste to Biohydrogen via Fermentation

Pin-Ching Maness, National Renewable Energy Laboratory



### Feedstock



#### **Agricultural Waste**



### **Forest Residue**



**Aqueous Waste** 

## Waste to BioHydrogen

### **Fermentation**





### Microbial Catalysts for H<sub>2</sub> Production



## Why Biohydrogen



#### **2016 BILLION-TON REPORT**

Advancing Domestic Resources for a Thriving Bioeconomy

Volume I | July 2016



**Renewable** – convert waste to renewable H<sub>2</sub>: monetize waste and its removal

### Scalable

- DOE-USDA <u>Billion-Ton Report</u> estimated one billion tons of waste biomass is available for fuels and chemicals, i.e., H<sub>2</sub>
- Bioreactors is a mature technology
- **Continuous Productivity** in the dark
- Microbial Catalysis many microbes naturally can produce H<sub>2</sub> without using the expensive precious metals.

## **Relevance to US DOE HFTO and Hydrogen Shot**

#### Portfolio Includes Hydrogen Production from Diverse Sources and Pathways



\*Sourced from March 11, 2021, Sustainable Energy Council (SEC) World Hydrogen Summit by Dr. Sunita Satyapal

4

## Technical Challenges and Approaches

- Lignocellulosic biomass has three polymers: cellulose (sixcarbon glucose), hemicellulose (five-carbon xylose), and lignin.
- H<sub>2</sub> yield via fermentation is low: 4 mol H<sub>2</sub>/mol sugar if <u>only</u> <u>acetate</u> produced.
- In practice, fermentation effluent contains other compounds (alcohols and organic acids).

\*MEC: Microbial electrolysis cell



| Challenges                                                          | Approaches                                                                                                                                                                                   |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Feedstock<br>Cost                                                   | <ul> <li>Use microbe that can <u>directly</u> convert cellulose to H<sub>2</sub></li> <li>Engineer cellulosic microbe to co-utilize hemicellulose</li> </ul>                                 |
| H <sub>2</sub> Molar<br>Yield (mol<br>H <sub>2</sub> /mol<br>sugar) | <ul> <li>Metabolic engineering to redirect<br/>pathways toward more H<sub>2</sub></li> <li>Integrate fermentation with MEC* to<br/>increase H<sub>2</sub> yield and remove waste.</li> </ul> |

## **Integrating Fermentation with Microbial Electrolysis Cell**



A NREL-Penn State integrated system has reported a **combined** H<sub>2</sub> molar yield >10.

Bruce Logan of Penn State Univ. will elaborate MEC.



Lalaurette et al. (2009) Intl. J. Hydrogen Energy

## **Clostridium thermocellum – the Microbe of Choice**

- A fast cellulosedegrader, at 55-60 °C
- A good H<sub>2</sub> producer
- C. thermocellum can
  - generate its own enzyme cocktails
  - hydrolyze cellulose
  - ferment
- Consolidated BioProcessing (CBP)

### **CBP** lowers feedstock and bioreactor costs

Corn

Stover



## **Breakthrough Achievements to Utilize Hemicellulose**

- Yet C. thermocellum cannot utilize xylose nor hemicellulose.
- The microbe cannot be engineered genetically.

(38-50%)

Cellulose

(C6 polymer)

cellulases

cellobiose/glucose (C6)



Cellulose/hemicellulose co-utilization will lower feedstock cost

## Convert Xylose to H<sub>2</sub>: <u>a Ground-breaking Achievement!</u>!



- Enable xylose utilization by adding two foreign genes.
- <u>Double</u> H<sub>2</sub> production upon adding equal amounts of xylose and cellulose, vs. cellulose alone.

Wei et al. (2018) Biotechnol. Bioeng.

An achievement 92 years after the first discovery of this microbe, a critical <u>first step</u> toward lowering feedstock cost!

## Convert *Hemicellulose*\* to H<sub>2</sub>

### 2. Gene X Hydrolyzing Hemicellulose to xylose



- Increase total  $H_2$  by 67% (to 3.5  $LH_2/L$ )
- Increase rate of H<sub>2</sub> by 24%

# These achievements led to funding supports from <u>DOE Office of Science</u>.

\*from pretreated corn stover; \*\*provisional patent underway



- Increase total H<sub>2</sub> by 95% (to 4.1 LH<sub>2</sub>/L)
- Increase rate of H<sub>2</sub> by 39%

### **Cutting-edge Research Drives New Frontiers of Science**

Characterize gene regulatory network, which could be rewired to increase H<sub>2</sub> yield



- Controllers of genes expression
- Genes regulated by the controller

Hebdon et al. (2021) Frontiers in Microbiol.

Probe how cells sense "food", trigger gene expression, and convert more sugars to  $H_2$ 





Chou

The knowledge is pivotal to increasing H<sub>2</sub> production and collaboration with Oak Ridge National Lab (left) and UCLA (right).



## A Seminal Discovery: C. thermocellum Can Fix CO<sub>2</sub> While Converting Waste Biomass to H<sub>2</sub>

**Carbon Flux Map** 

- Tracking Carbons
- Machine Learning



- <sup>13</sup>C-carbon tracer is a powerful tool to track the fate and flux of carbon inside the cells
- Flux map analysis revealed CO<sub>2</sub> fixation <u>via a novel pathway</u>, with ~<u>15% increase in carbon efficiency</u>.

This cross-cutting technology could reduce carbon emission.



## Summary

## Acknowledgements

- Engineer *C. thermocellum* to use xylose and hemicellulose, the outcomes increase rates and total amounts of H<sub>2</sub> and reduce feedstock cost.
- Probing gene regulatory network and sugar sensing will increase H<sub>2</sub> production
- Identify a novel CO<sub>2</sub>-fixation pathway: build cross-cutting science toward carbon capture while producing  $H_2$ .







Wei Xiong

**Katherine Chou** Principal Investigator







**Trevor Croft** 



**Skyler Hebdon** NREL | 13





Jonathan Lo





Luis H. Reyes







# Biohydrogen Production using Microbial Electrolysis Cells

Bruce E. Logan, Penn State University



## Cellulose to H<sub>2</sub>: Getting past the fermentation barrier

Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply



### In Theory: Cellulose $\rightarrow$ 12 H<sub>2</sub>

1.34/2 billion ton/y of cellulose could produce  $\sim 10^{11}$  kg/yr H<sub>2</sub>





# Cellulose to H<sub>2</sub>: Getting past the fermentation barrier



## Fuel cells versus (PEM) water electrolyzers

**Fuel Cell:** Produces electricity using  $H_2 (+ O_2)$ 



Water Electrolyzer: Produces H<sub>2</sub> using electricity





# Microbial Fuel Cells (MFCs) make electricity using microorganisms



5

## Microbial Electrolysis Cells (MECs) produce H<sub>2</sub>



## What microorganisms produce current = exoelectrogenic?



Logan, Rossi, Ragab, Saikaly (2019) Nature Rev. Microbiol.

. DEPARTMENT OF ENERGY

# Scaling up MFCs: from laboratory to pilot scale

MFCs **Gen 0**: 0.025 L, 25 m<sup>2</sup>/m<sup>3</sup>



earthshots









Gen 2: 2 L, 20 m<sup>2</sup>/m<sup>3</sup>





Hydrogen

**Pilot-Scale MFC:** 850 Lactive volume, 25 m<sup>2</sup>/m<sup>3</sup>







## Scaling up MECs: from laboratory to pilot scale: Part I



# Scaling up MECs: Part II, capturing H<sub>2</sub>



# Scaling up MECs Part III: Increasing current and H<sub>2</sub> production rates

# M<u>F</u>Cs

## Applying lessons learned from MFCs to MECs

![](_page_23_Picture_3.jpeg)

### **Applying Design features of our best**

![](_page_23_Figure_5.jpeg)

Ultra-compact MFC design increased current densities from 8 to  $50 \text{ A/m}^2$ 

![](_page_23_Picture_7.jpeg)

- Improved MECs (in progress)
  - Avoided solution resistance by using a solid electrolyte anion exchange membrane (AEM) with gas phase electrolyte
  - Unique AEM design reduced anode and cathode resistances by balancing pH
- Preliminary MEC results: 17x increase in performance
  - 42 A/m<sup>2</sup>-d (versus 5 A/m<sup>2</sup>)
  - 63 L/L-d (versus ~3.8 L/L-d)
  - Highest H<sub>2</sub> production rate achieved under these solution conditions

## Avoiding the use of precious metals in MECs

![](_page_24_Figure_1.jpeg)

# Why use biomass (electrolyzers) to achieve \$1H<sub>2</sub>/kg?

### • Water electrolyzers require 2 steps

- Water purification (reverse osmosis + deionization)
- Electrolyzer operation using electrical power
- Electricity use is high
  - Minimum of electrical energy for water splitting is
     33 kWh/kg H<sub>2</sub> (thermodynamics)
- \$1 kg H<sub>2</sub> requires for electricity:
  - \$0.03/kWh for electricity (thermodynamic limit)
  - \$0.02/kWh considering current efficiencies (70%)
- Precious metals may be required.

Hydrogen

- PEM uses Ir, Pt; AEM does not (Ni-based)
- Small, compact reactors, high electricity demand

- **Biomass** (with electrolyzers) requires 2 steps
  - Biomass fermentation
    - Fermentation is spontaneous, so no energy input needed during process (neglecting reactor stirring, pumps)
    - Produces 4 moles H2 per cellulose (of maximum = 12)
  - Microbial electrolysis Cells (MECs)
    - Minimum electrical energy is only 1/10<sup>th</sup> electrical energy compared to water electrolyzers
- \$1 kg H<sub>2</sub> requires for electricity
  - 0.30/kWh for electricity (thermodynamic limit) for 8/12 moles of H<sub>2</sub>
  - \$0.45/kWh for 12/12 moles of H2.
- Precious metals not required.
- Large reactors used, need transport of biomass, low electricity demand

# CONCLUSIONS

- MECs use bacteria as the "catalyst" to produce an electrical current,
  - Fuel = waste organic matter
  - H<sub>2</sub> produced electrochemically (as in a water electrolyzer) using biomass electrons
- MEC designs have lagged those of MFCs... but innovations can improve both systems
- Recent MEC designs achieved 63 L/L-d, with 100 L/L-d on the horizon without using precious metals

Acknowledgements for Funding:

![](_page_26_Picture_7.jpeg)

![](_page_26_Picture_8.jpeg)

### Special acknowledgements to:

Dr. Ruggero Rossi Asst. Research Prof. (Penn State) Recent work on high-performance MFCs and MECs

![](_page_26_Picture_11.jpeg)

Dr. Kyoung-Yeol Kim Assistant Professor (SUNY Albany) Two-chamber brush MECs and HER catalysts

![](_page_26_Picture_13.jpeg)

# **QUESTIONS?**

![](_page_27_Picture_1.jpeg)