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Hydrogen Production - Reforming of Natural Gas Sustcon
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Hydrogen Production - Reforming of Natural Gas Sustcon
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Hydrogen Production - Reforming of Natural Gas Sustcon

Low Temperature Plasma Reforming
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4 Simplified process for distributed hydrogen production

v’ Low temperature operation (<500°C)

4 Integration of renewable electricity

Green / Blue Hydrogen Production



Low Temperature Plasma Reforming Susteon

Jet Propulsion Laboratory (JPL) pioneered the development of a scaled-up dielectric barrier discharge
(DBD) reactor to produce hydrogen from steam methane reforming (SMR)

Clamshell
Heater

« Scaled-up DBD reactor: 0.9 kg H,/day.

« Methane
= Gas [

» Conversion efficiency of the DBD reactor:
70-80% at 550°C and 500 W.

B -
B, Cylinder

« Demonstrated continuous run of 8 hours

« Typical product gas: o, ° Izo .
690/0 H2, 6% COz, 15% CO, 10% CH4 i ‘?;.IN Steam Generator .. Eﬁ;ﬂ:ﬁ g IN_,%?;;m:mo_D
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Susteon formed a partnership with ! B0 S oy LI ¥ 4 N
L |-—s] Center Electrode L.;"'."'g? lumina L .
SoCalGas and JPL to further develop and ot S e | e R Tan )Lr‘
commercialize this technology. ioho: B

Green / Blue Hydrogen Production U.S. Patent No. 10,898,875. 26 Jan. 2021. AIChE Journal 66.4 (2020): e16880. JP'_ MSoCaIGas



Low Temperature Plasma Reforming of Natural Gas Sustcon
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Plasma selectively heats the catalyst - significantly lower bulk temperature

Eliminates fossil fuel combustion to drive the endothermic SMR f reaction

Modular integrated skid process unit to produce high purity H,
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Low Temperature Plasma Reforming of Natural Gas
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Comparison of Hydrogen Production Routes

Susteon

Hydrogen Production Cost ($/kg)

6 5.30

5 4.42

2.44

—

Plasma
Reformer

Electric

SMR Electrolysis

Cost Distribution among various sections’

Category

Capital and
Operating Cost

Feedstocks**

Electricity***

Unit Cost of
Hydrogen

Electric

SMR

3.48

0.52

$4.42/kg

($/kg H,)
PEM Plasma Reformer
Electrolysis Current
1.50* 1.10
0 0.26

$5.30/kg $2.44/kg

All the three technologies include CO, capture and H, product compression to 350 bar

'Estimations done using the H2A model
*Electrolysis capital and other costs = $1500/kW

**Feedstock is natural gas @ $3/MMBTU; water for electrolysis

***Electricity price is $0.06/kWh
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Comparison — Pathway to $1/kg

Susteon

Hydrogen Production Cost ($/kg)

Electric

SMR Electrolysis

Pathway
to $1/kg

Plasma Reformer

Cost Distribution among various sections
($/kg H,)

Plasma Reformer

Category

Current Pathway
Capital and 45% of current
Operating Cost 1a1ll Ut cost

Natural gas @
$1.5/MMBTU

Electricity @
$0.02/kWh

Feedstocks 0.26* 0.13

Electricity

Unit Cost of

Hydrogen $2.44/kg $1/kg

All the three technologies include CO, capture and H, product compression to 350 bar
*Feedstock is natural gas @ $3/MMBTU; water for electrolysis
**Electricity price is $0.06/kWh

Green / Blue Hydrogen Production
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Conclusions Sust

+ Plasma Reforming of natural gas is an attractive route for distributed hydrogen production.

* Pioneered by JPL and SoCalGas, Susteon developed this technology at bench-scale.

» Results show that the plasma reformer manifests into significant process intensification to
achieve high natural gas conversions and H,-rich product at <500°C and 1 atm.

 This technology can also produce a pure CO, stream.

« Has the potential to produce hydrogen at $1/kg with further R&D.

Green / Blue Hydrogen Production
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DOE-H, Earth-Shot Summit

Mark A. Cappelli, Ph.D.
Thermochemical Conversion

Thermal Plasmas provide the
energy source needed to drive
reactions involving hydrocarbons

towards H, production

Hydrocarbon
Containing
Reactants

H,-Containing
Products

Thermal Plasma

Electricity
Reactants: Natural Gas, O,, CO,,Biogas
Products: H,, CO, CO,, Water

Thermal Plasma: DC Arc, RF, Microwave

Common Thermochemical Conversions:’

Steam Reforming
CH,+ H,0 — CO +3H, AH=+206 kJ/mole

Dry Reforming
CH, + CO, — 2C0 + 2H, AH= 4247 kJ/mole
Partial Oxidation

CHy +350, — CO +2H, AH=-36 kJ/mole

« DR/PO can be combined (Autothermal Reforming)
* require high temperature for good conversion

 catalysts allow operation at < 1200°C ensuring
good yields

« water-gas shift (catalysts) is used to increase H,
product in conjunction with CO, sequestration

« Costs? range from $1.50 — $2.50/kgH,

« Catalysts contribute >50% of the costs3

Hrabovsky et al, Plasma Chem Plasma Process (2018) 38:743-758
2Kayfeci,et al., M., in Solar hydrogen production (2019), pp. 45-83, Academic Press.
3Ayodele, et al., Sustainability, 12(23) (2020), p.10148.



DOE-H, Earth-Shot Summit

Thermochemical Plasma

Conversion
Enables access to higher
temperatures circumventing catalysts

CH, + H,0
1.0
0.8 y //"
/ 2
o / \\ /
g 0.6 T
E HzO/ \/
3 o\
o U \
S /\
CO
02 \\ — T —
\ /
0 \
0.0 §_ /
0 100 2000 3000 4000 5000
: , TK

conventional =
with catalyst

—]

thermal plasma

CH, +>H,0 + 70, — CO +2H,

5
—— SMR ($0.05/kWhr)
= — - SMR+PO ($0.05/kWhr)
— — SMR+PO ($0.05/kWhr with 50% Heat Recovery)
4 - —— SMR+PO ($0.03/kWhr with 50% Heat Recovery)

Hydrogen ProductionElectricity Cost ($/kgH.,)
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plasma SMR too costly (even at wholesale
pricing of electricity)
combined with partial oxidation (Steam ATR)

AH= +85 kJ/mole

heat recovery necessary to hit $1/kgH, boundary

electricity pricing of $0.03/kWhr — well in range



DOE-H, Earth-Shot Summit

Thermochemical Plasma Conversion

Precommercial/Commercial

€) RECARBON, INC.

Industry Sector

« targeting landfill gas/bio-digestion gases
« plasma ATR with CO, instead of steam
« electrodeless microwave thermal plasma

 linearly scalable ~5 kW units/few processing
steps

* requires air separation
« product separation
« WGS for higher H, yields and CC

» specialized sector provides market entry at
slightly above $1/kgH,

Technical Improvements

« reduce waste heat (regeneratively heat reactants)
» exceptional plasma arc stability

« efficient reactant/plasma mixing to prevent blow-
by (improve yields/conversion efficiency)

Expand to Larger Market Sectors (Biggest Barriers)
« Scaling plasma source to larger unit power units
for MW-level processing
 reduce overall CAPEX/OPEX
* tens of 100 kW units (>1 tonneH,/unit/day)

« Challenges include

* managing "hotter”, less stable and higher
power plasmas (thermal plasmas constrict)

* reactor prone to increased radiation loss

« greater need for mixing and new strategies for
heat recovery



DOE-H, Earth-Shot Summit

Thermal Plasma Advantages

* Less energy requirement compared to electrolysis and
SMR

* Lower OPEX leading to lower cost hydrogen
production.

* Inherently modular design for easy scalability
Product steam/heat that can be used for other

\ processes

f Advantages of plasma-reforming technology? \

J

Funding to Accelerate Progress

(Specific areas where government funding
could accelerate progress for your approach?

offtake agreements

* Electricity subsidies for ALL hydrogen production
K technologies (not just for electrolysis)

« Financing/Loan guarantees not dependent on hydrogen

* H, infrastructure specific funding, such as CAPEX grants

~N

J

R&D Requirements

R&D required to scale technology up to \
industrial scale?

* Impurity management (up and and downstream)

* Product gas thermal management for optimal use of
steam and heat generated for downstream syngas to
hydrogen conversion

* plasma stability at 10x power

» develop tools for simulating complex EM- plasma
flow coupling

\_

These are needed now for
achieving $1/kgH, at scale

/

For Deployment at Scale

(Other immediate needs for deployment at \
scale:

« Testing and development facilities capable of
handling reactant and product volume for high
power units

* Relatively low-cost downstream equipment for
modular low-volume units

\_ J
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