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Green / Blue Hydrogen Production

Hydrogen Production - Reforming of Natural Gas
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Green / Blue Hydrogen Production

Hydrogen Production - Reforming of Natural Gas
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 Simplified process for distributed hydrogen production
 Low temperature operation (<500oC)
 Integration of renewable electricity
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Low Temperature Plasma Reforming

• Scaled-up DBD reactor: 0.9 kg H2/day. 

• Conversion efficiency of the DBD reactor: 
70–80% at 550oC and 500 W. 

• Demonstrated continuous run of 8 hours

• Typical product gas:
69% H2, 6% CO2, 15% CO, 10% CH4

Susteon formed a partnership with 
SoCalGas and JPL to further develop and 
commercialize this technology.

Jet Propulsion Laboratory (JPL) pioneered the development of a scaled-up dielectric barrier discharge 
(DBD) reactor to produce hydrogen from steam methane reforming (SMR) 

AIChE Journal 66.4 (2020): e16880.U.S. Patent No. 10,898,875. 26 Jan. 2021.Green / Blue Hydrogen Production
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Low Temperature Plasma Reforming of Natural Gas

Green / Blue Hydrogen Production

Technology
• Cold, non-thermal plasma driven-steam methane reformer reactor

CH4 + 2H2O → CO2 + 4H2

• Plasma selectively heats the catalyst  significantly lower bulk temperature
• Eliminates fossil fuel combustion to drive the endothermic SMR f reaction
• Modular integrated skid process unit to produce high purity H2

Inner dielectric rod

Gas flow

Annulus packed with catalyst
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Low Temperature Plasma Reforming of Natural Gas

Green / Blue Hydrogen Production

H2 74.3%
CH4 6.1%
CO2 14.5%
CO 5.1%



9

0

1

2

3

4

5

6

Comparison of Hydrogen Production Routes

Green / Blue Hydrogen Production

Electric
SMR Electrolysis Plasma 

Reformer

Category Electric 
SMR

PEM 
Electrolysis

Plasma Reformer

Current

Capital and 
Operating Cost 3.48 1.50* 1.10

Feedstocks** 0.52 0 0.26

Electricity*** 0.42 3.80 1.08

Unit Cost of 
Hydrogen $4.42/kg $5.30/kg $2.44/kg

Cost Distribution among various sections1

($/kg H2)
4.42
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2.44
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All the three technologies include CO2 capture and H2 product compression to 350 bar
1Estimations done using the H2A model

*Electrolysis capital and other costs = $1500/kW
**Feedstock is natural gas @ $3/MMBTU; water for electrolysis

***Electricity price is $0.06/kWh
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Green / Blue Hydrogen Production

Electric
SMR Electrolysis Plasma Reformer
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Pathway 
to $1/kg

1.0

Category
Plasma Reformer

Current Pathway

Capital and 
Operating Cost 1.10 0.50 45% of current 

cost

Feedstocks 0.26* 0.13 Natural gas @ 
$1.5/MMBTU

Electricity 1.08** 0.37 Electricity @ 
$0.02/kWh

Unit Cost of 
Hydrogen $2.44/kg $1/kg

All the three technologies include CO2 capture and H2 product compression to 350 bar
*Feedstock is natural gas @ $3/MMBTU; water for electrolysis

**Electricity price is $0.06/kWh

Cost Distribution among various sections
($/kg H2)

Comparison – Pathway to $1/kg
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Conclusions

Green / Blue Hydrogen Production

• Plasma Reforming of natural gas is an attractive route for distributed hydrogen production.

• Pioneered by JPL and SoCalGas, Susteon developed this technology at bench-scale.

• Results show that the plasma reformer manifests into significant process intensification to 
achieve high natural gas conversions and H2-rich product at <500oC and 1 atm.

• This technology can also produce a pure CO2 stream.

• Has the potential to produce hydrogen at $1/kg with further R&D.



DOE-H2 Earth-Shot Summit

Thermochemical Conversion

Electricity

Hydrocarbon 
Containing 
Reactants Thermal Plasma

H2-Containing 
Products

Reactants: Natural Gas, O2, CO2 , Biogas
Products: H2, CO, CO2, Water
Thermal Plasma: DC Arc, RF, Microwave

𝐶𝐶𝐶𝐶4 + 𝐶𝐶2𝑂𝑂 ⟶ 𝐶𝐶𝑂𝑂 + 3𝐶𝐶2 ∆H= +206 kJ/mole

Steam Reforming

𝐶𝐶𝐶𝐶4 + 𝐶𝐶𝑂𝑂2 ⟶ 2𝐶𝐶𝑂𝑂 + 2𝐶𝐶2 ∆H= +247 kJ/mole

Dry Reforming

Partial Oxidation

𝐶𝐶𝐶𝐶4 + 1
2
𝑂𝑂2 ⟶ 𝐶𝐶𝑂𝑂 + 2𝐶𝐶2 ∆H= -36 kJ/mole

1Hrabovsky et al, Plasma Chem Plasma Process (2018) 38:743–758
2Kayfeci,et al., M., in Solar hydrogen production (2019), pp. 45-83, Academic Press.
3Ayodele, et al., Sustainability, 12(23) (2020), p.10148.

• DR/PO can be combined (Autothermal Reforming)

• require high temperature for good conversion

• catalysts allow operation at < 1200oC ensuring 
good yields

• water-gas shift (catalysts) is used to increase H2
product in conjunction with CO2 sequestration

• Costs2 range from $1.50 ⟶ $2.50/kgH2

• Catalysts contribute >50% of the costs3

Mark A. Cappelli, Ph.D.



DOE-H2 Earth-Shot Summit

Thermochemical Plasma 
Conversion

conventional
with catalyst

thermal plasma

• combined with partial oxidation (Steam ATR)

• heat recovery necessary to hit $1/kgH2 boundary

• electricity pricing of $0.03/kWhr ⟶ well in range

𝐶𝐶𝐶𝐶4 + 1
2
𝐶𝐶2𝑂𝑂 + 1

4
𝑂𝑂2 ⟶ 𝐶𝐶𝑂𝑂 + 5

2
𝐶𝐶2 ∆H= +85 kJ/mole



DOE-H2 Earth-Shot Summit

• electrodeless microwave thermal plasma

• linearly scalable ~5 kW units/few processing 
steps 

• requires air separation
• product separation
• WGS for higher H2 yields and CC

• specialized sector provides market entry at 
slightly above $1/kgH2

Thermochemical Plasma Conversion



Advantages of plasma-reforming technology? 
• Less energy requirement compared to electrolysis and 

SMR
• Lower OPEX leading to lower cost hydrogen 

production.
• Inherently modular design for easy scalability
• Product steam/heat that can be used for other 

processes

Specific areas where government funding 
could accelerate progress for your approach?

• Financing/Loan guarantees not dependent on hydrogen 
offtake agreements

• H2 infrastructure specific funding, such as CAPEX grants
• Electricity subsidies for ALL hydrogen production 

technologies (not just for electrolysis)

R&D required to scale technology up to 
industrial scale?  

• Impurity management (up and and downstream)
• Product gas thermal management for optimal use of 

steam and heat generated for downstream syngas to 
hydrogen conversion

• plasma stability at 10x power
• develop tools for simulating complex EM- plasma 

flow coupling

DOE-H2 Earth-Shot Summit

Thermal Plasma Advantages

Funding to Accelerate Progress

R&D Requirements

These are needed now for 
achieving $1/kgH2 at scale

Other immediate needs for deployment at 
scale:

• Testing and development facilities capable of 
handling reactant and product volume for high 
power units

• Relatively low-cost downstream equipment for 
modular low-volume units

For Deployment at Scale
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