Catalytic Non-Thermal Plasma Process for Hydrogen Production

Hydrogen Shot Summit

Thermal Conversion with Carbon Capture and Storage Panel

Plasma Technologies August 31, 2021

Creating solutions for a NET ZERO world

Susteon

Raghubir Gupta, President / Co-Founder

Current Team and Technology Focus

RESEARCH & DEVELOPMENT TEAM

Raghubir Gupta President & Co-Founder

Arnold Toppo Research Engineer

S. James Zhou Senior Director

Tyson Lanigan-Atkins Materials Scientist

Cory Sanderson Process Technologist

Jian Zheng Sr. Research Engineer

Vasudev Haribal Research Engineer

Andrew Tong Sr. Research Engineer

BUSINESS TEAM

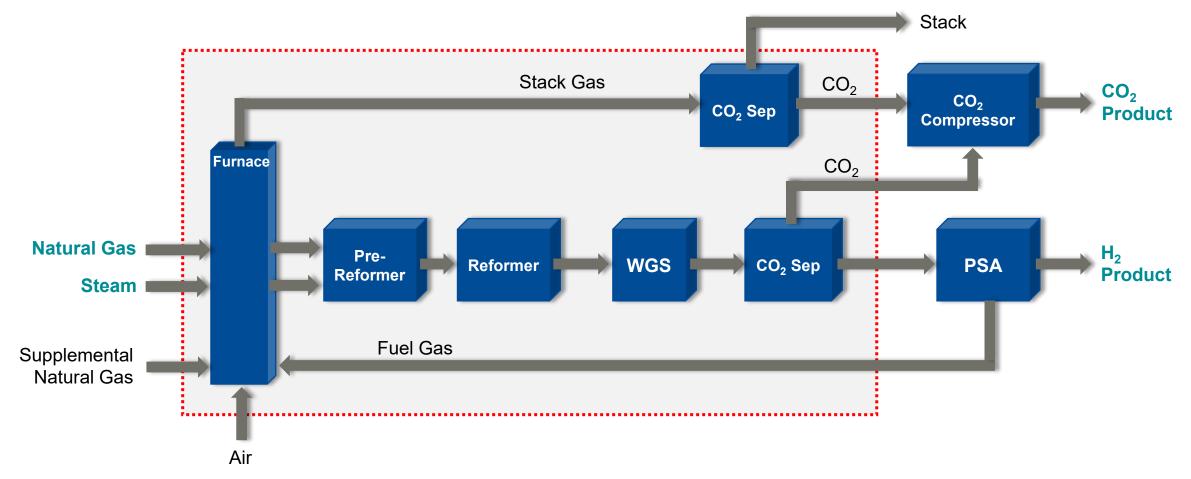
Shantanu Agarwal President / Co-Founder

Rich McGivney Chief Financial Officer

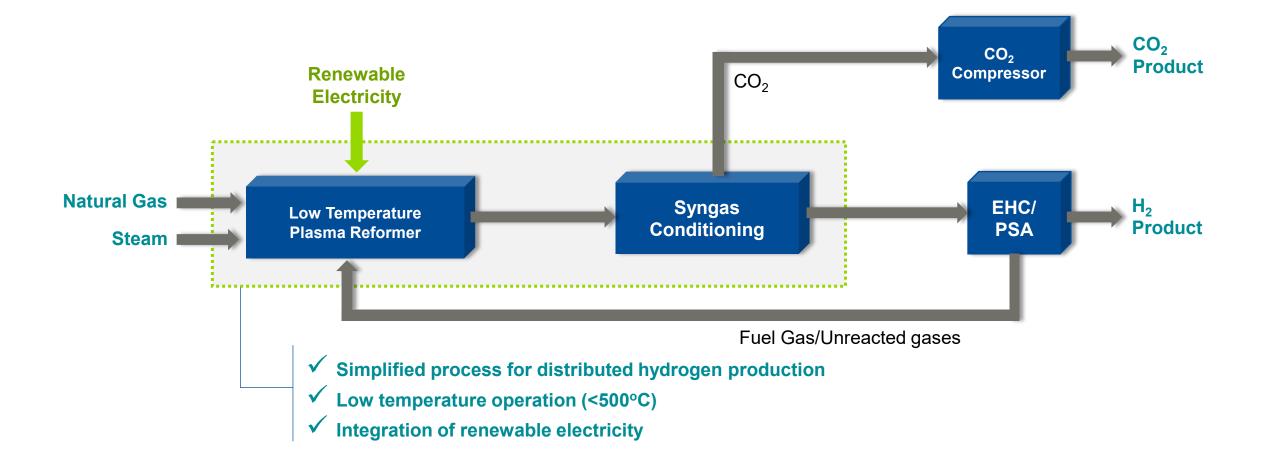
Brian Alexander Director, Contracts & Legal Affairs


ander Brittany Wood ntracts Senior Administrator ffairs

Hydrogen Production - Reforming of Natural Gas

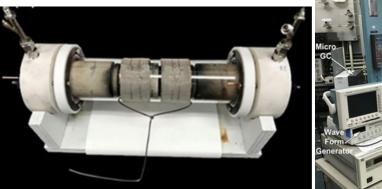

Steam Methane Reforming

Hydrogen Production - Reforming of Natural Gas


Steam Methane Reforming

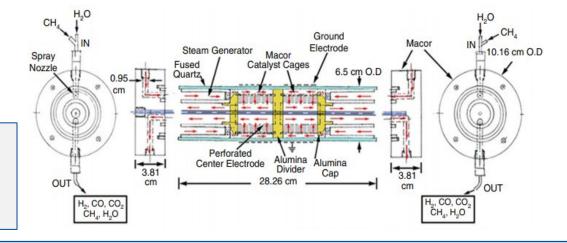
Hydrogen Production - Reforming of Natural Gas

Low Temperature Plasma Reforming



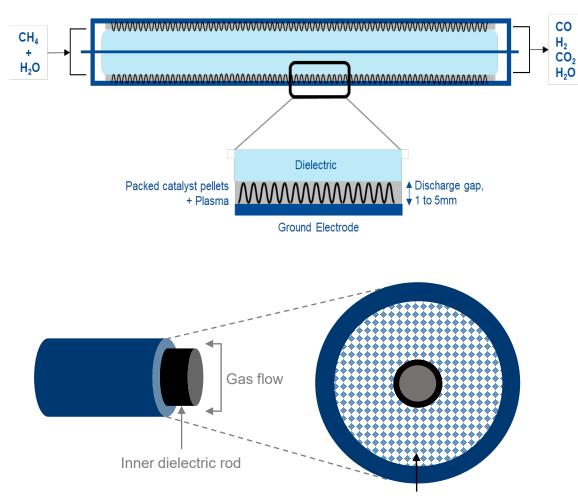
Low Temperature Plasma Reforming

Jet Propulsion Laboratory (JPL) pioneered the development of a scaled-up dielectric barrier discharge (DBD) reactor to produce hydrogen from steam methane reforming (SMR)


- Scaled-up DBD reactor: 0.9 kg H₂/day.
- Conversion efficiency of the DBD reactor: 70–80% at 550°C and 500 W.
- Demonstrated continuous run of 8 hours
- Typical product gas: 69% H₂, 6% CO₂, 15% CO, 10% CH₄

Susteon formed a partnership with SoCalGas and JPL to further develop and commercialize this technology.

Susteon



U.S. Patent No. 10,898,875. 26 Jan. 2021.

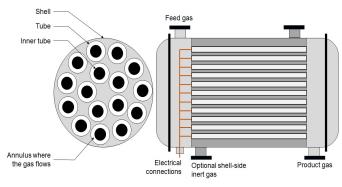
AIChE Journal 66.4 (2020): e16880.

Low Temperature Plasma Reforming of Natural Gas

Annulus packed with catalyst

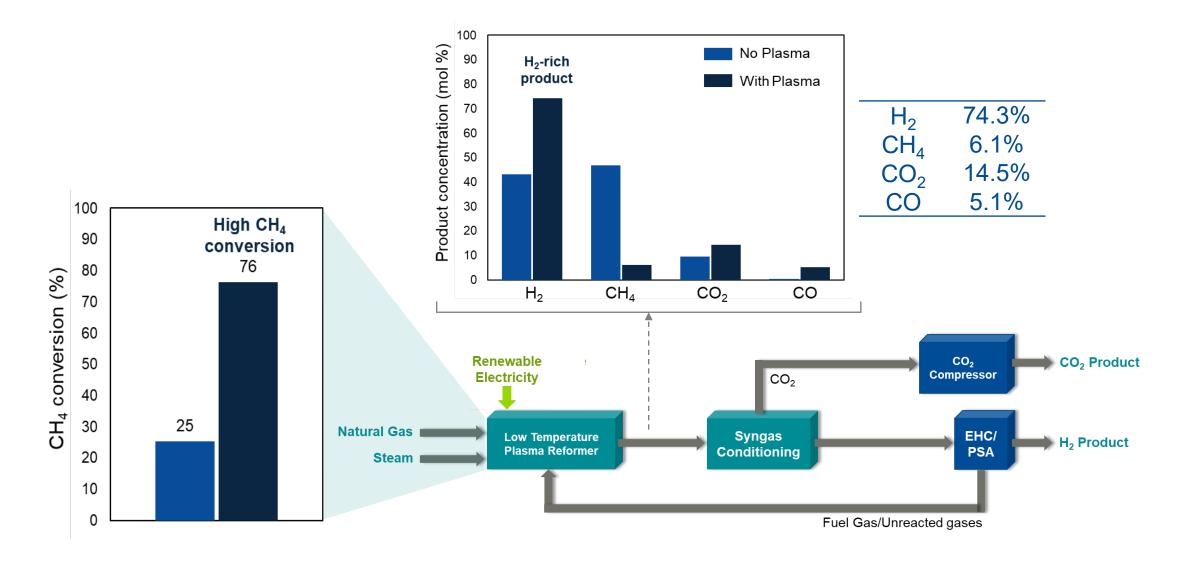
Technology

• Cold, non-thermal plasma driven-steam methane reformer reactor


 $\text{CH}_{4} + 2\text{H}_{2}\text{O} \rightarrow \text{CO}_{2} + 4\text{H}_{2}$

- Plasma selectively heats the catalyst \rightarrow significantly lower bulk temperature
- Eliminates fossil fuel combustion to drive the endothermic SMR f reaction
- Modular integrated skid process unit to produce high purity H₂

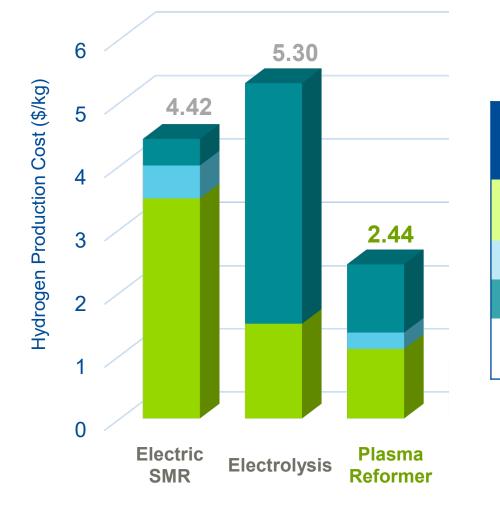
Susteon


Green / Blue Hydrogen Production

7

Low Temperature Plasma Reforming of Natural Gas

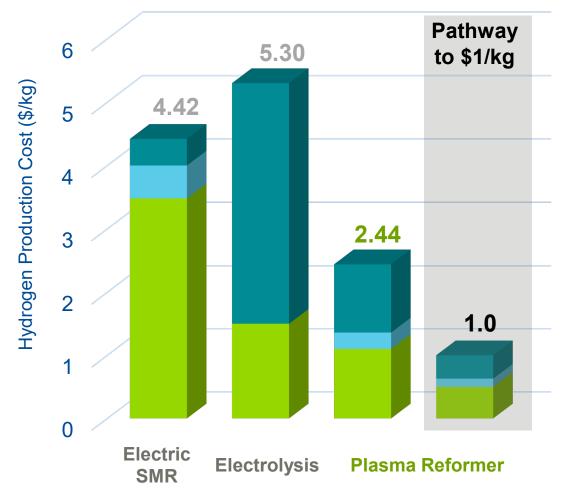
Green / Blue Hydrogen Production


CLARIANT

Susteon

8

Comparison of Hydrogen Production Routes


Cost Distribution among various sections¹ (\$/kg H₂)

Category	Electric SMR	PEM Electrolysis	Plasma Reformer Current
Capital and Operating Cost	3.48	1.50*	1.10
Feedstocks**	0.52	0	0.26
Electricity***	0.42	3.80	1.08
Unit Cost of Hydrogen	\$4.42/kg	\$5.30/kg	\$2.44/kg

All the three technologies include CO₂ capture and H₂ product compression to 350 bar ¹Estimations done using the H2A model *Electrolysis capital and other costs = \$1500/kW **Feedstock is natural gas @ \$3/MMBTU; water for electrolysis ***Electricity price is \$0.06/kWh

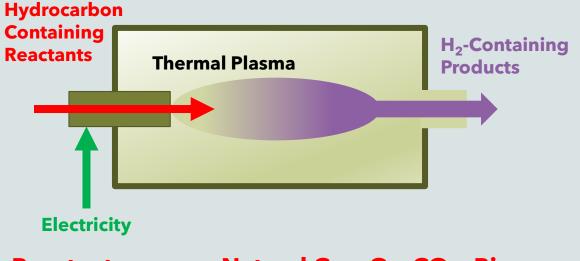
Comparison – Pathway to \$1/kg

 $(kg H_2)$ **Plasma Reformer** Category Current Pathway Capital and 45% of current 1.10 0.50 **Operating Cost** cost Natural gas @ **Feedstocks** 0.26* 0.13 \$1.5/MMBTU Electricity @ Electricity 1.08** 0.37 \$0.02/kWh **Unit Cost of** \$2.44/kg \$1/kg Hydrogen

Cost Distribution among various sections

All the three technologies include CO₂ capture and H₂ product compression to 350 bar *Feedstock is natural gas @ \$3/MMBTU; water for electrolysis **Electricity price is \$0.06/kWh

Conclusions


Susteon

- Plasma Reforming of natural gas is an attractive route for distributed hydrogen production.
- Pioneered by JPL and SoCalGas, Susteon developed this technology at bench-scale.
- Results show that the plasma reformer manifests into significant process intensification to achieve high natural gas conversions and H₂-rich product at <500°C and 1 atm.
- This technology can also produce a pure CO₂ stream.
- Has the **potential to produce hydrogen at \$1/kg** with further R&D.

Mark A. Cappelli, Ph.D.

Thermochemical Conversion

<u>Thermal Plasmas</u> provide the energy source needed to drive reactions involving hydrocarbons towards H₂ production

Reactants:Natural Gas, O2, CO2, BiogasProducts:H2, CO, CO2, WaterThermal Plasma:DC Arc, RF, Microwave

Common Thermochemical Conversions:¹

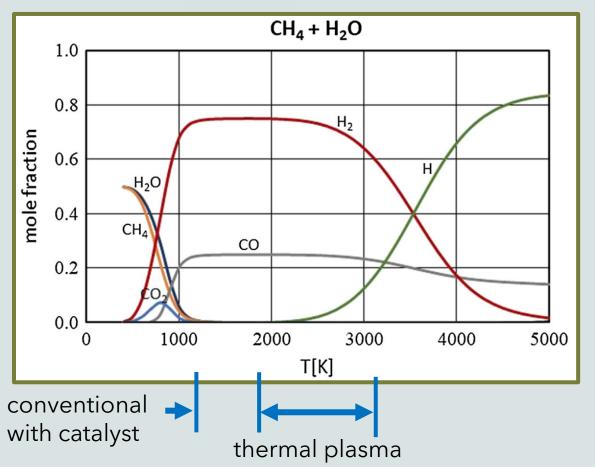
Steam Reforming

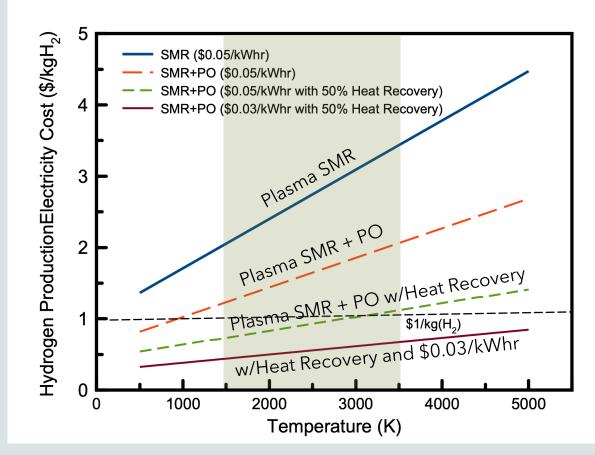
 $CH_4 + H_2O \rightarrow CO + 3H_2$ $\Delta H = +206 \text{ kJ/mole}$

Dry Reforming

 $CH_4 + CO_2 \rightarrow 2CO + 2H_2 \quad \Delta H = +247 \text{ kJ/mole}$

Partial Oxidation


 $CH_4 + \frac{1}{2}O_2 \rightarrow CO + 2H_2$ $\Delta H = -36 \text{ kJ/mole}$


- DR/PO can be combined (Autothermal Reforming)
- require high temperature for good conversion
- catalysts allow operation at < 1200°C ensuring good yields
- water-gas shift (catalysts) is used to increase H_2 product in conjunction with CO_2 sequestration
- Costs² range from $1.50 \rightarrow 2.50/kgH_2$
- Catalysts contribute >50% of the costs³

¹Hrabovsky et al, Plasma Chem Plasma Process (2018) 38:743–758 ²Kayfeci,et al., M., in Solar hydrogen production (2019), pp. 45-83, Academic Press. ³Ayodele, et al., Sustainability, 12(23) (2020), p.10148.

Thermochemical Plasma Conversion

Enables access to higher temperatures circumventing catalysts

- plasma SMR too costly (even at wholesale pricing of electricity)
- combined with partial oxidation (Steam ATR)

 $CH_4 + \frac{1}{2}H_2O + \frac{1}{4}O_2 \longrightarrow CO + \frac{5}{2}H_2$ $\Delta H = +85 \text{ kJ/mole}$

- heat recovery necessary to hit \$1/kgH₂ boundary
- electricity pricing of 0.03/kWhr \rightarrow well in range

RECARBON, INC.

19 x 5.5 x 9 (in

Thermochemical Plasma Conversion

Precommercial/Commercial

Industry Sector

- targeting landfill gas/bio-digestion gases
- **plasma** ATR with CO₂ instead of steam
- electrodeless microwave thermal plasma
- linearly scalable ~5 kW units/few processing steps
 - requires air separation
 - product separation
 - WGS for higher H₂ yields and CC
- specialized sector provides market entry at slightly above \$1/kgH₂

Technical Improvements

- reduce waste heat (regeneratively heat reactants)
- exceptional plasma arc stability
- efficient reactant/plasma mixing to prevent blowby (improve yields/conversion efficiency)

Expand to Larger Market Sectors (Biggest Barriers)

- Scaling plasma source to larger unit power units for MW-level processing
 - reduce overall CAPEX/OPEX
 - tens of 100 kW units (>1 tonneH₂/unit/day)
- Challenges include
 - managing "hotter", less stable and higher power plasmas (thermal plasmas constrict)
 - reactor prone to increased radiation loss
 - greater need for mixing and new strategies for heat recovery

Thermal Plasma Advantages

Advantages of plasma-reforming technology?

- Less energy requirement compared to electrolysis and SMR
- Lower OPEX leading to lower cost hydrogen production.
- Inherently modular design for easy scalability
- Product steam/heat that can be used for other processes

Funding to Accelerate Progress

Specific areas where government funding could accelerate progress for your approach?

- Financing/Loan guarantees not dependent on hydrogen offtake agreements
- H₂ infrastructure specific funding, such as CAPEX grants
- Electricity subsidies for ALL hydrogen production technologies (not just for electrolysis)

R&D Requirements

R&D required to scale technology up to industrial scale?

- Impurity management (up and and downstream)
- Product gas thermal management for optimal use of steam and heat generated for downstream syngas to hydrogen conversion
- plasma stability at 10x power
- develop tools for simulating complex EM- plasma flow coupling

These are needed now for achieving \$1/kgH₂ at scale

For Deployment at Scale

Other immediate needs for deployment at scale:

- Testing and development facilities capable of handling reactant and product volume for high power units
- Relatively low-cost downstream equipment for modular low-volume units