

HTE Status, Needs, and Meeting Hydrogen Shot Target

Olga Marina

Hydrogen Shot Summit

Solid Oxide Electrolysis Cell (SOEC): Mature Technology with Low-Cost Materials

- Electrolyte: stabilized zirconium oxide •
- Hydrogen electrode: Ni-zirconium oxide composite .
- <u>Oxygen electrode</u>: ceramics $La(Sr)CoO_3$ or $La(Sr)Fe(Co)O_3$
- Interconnect: stainless steel with protective coatings • against oxidation and Cr volatilization
- Low cost (no Pt, Ir) materials •

Single Cell

Stack of cells

H⁺

HTE Achieve Very High Electrical Efficiencies; Energy is Provided by Heat

High temperatures provide thermodynamic and kinetic advantages

- > 95% stack electrical efficiency
- Thermal integration opportunities with process heat sources
- 90% system thermodynamic efficiency of making H₂
- Pressurization
- Low operating voltage, 1.28V

FuelCell Energy (USA)

OxEon (USA)

Nexceris (USA)

BloomEnergy (USA)

To enable large-scale commercialization, at least 5 years life is required

Scaleup and Demonstration Projects Started

Demo Projects

Year of commisioning

Hauch et al., Science 370, eaba6118 (2020)

u.s. department of energy Hydrogen

120 kW_{DC} reversible SOFC energy storage system demonstrated at Boeing Huntington Beach connected to the Southern California Edison grid.

https://onlinelibrary.wiley.com/doi/full/10.1002/fuce.201600185

Bloom Energy's manufacturing facilities are capable of producing 500 MW of electrolyzers; GW within a year

250 kW HTE module successfully tested in May 2021 by Sunfire; 2.6 MW planned for 2022

https://fuelcellsworks.com/news/sunfire-successfully-tests-the-worlds-largest-high-temperature-electrolysis-module/

March 4, 2021

Haldor Topsoe to build large-scale SOEC electrolyzer manufacturing facility to meet customer needs for green hydrogen production

Production capacity of 500 MW/year, expandable to 5 GW; operational by 2023

https://blog.topsoe.com/haldor-topsoe-to-build-large-scalesoec-electrolyzer-manufacturing-facility-to-meet-customerneeds-for-green-hydrogen-production

Joint EERE-NE Hydrogen Production Demonstration Projects at NPP

earthshots

- Demonstrate hydrogen production using direct electrical power offtake from a nuclear power plant (NPP)
- Develop monitoring and controls procedures for scaleup to large commercial-scale hydrogen plants
- Evaluate power offtake dynamics on NPP power transmission stations to avoid NPP flexible operations
- Produce hydrogen for captive use by NPPs and first movers of clean hydrogen

Hvdroaen

Nine Mile Point Nuclear Power Plant LTE/PEM Vendor 2

Thermal & Electrical Integration at an Xcel Energy Nuclear Plant HTE/Vendor 1

H2NEW Consortium: <u>H2</u> from the <u>Next-generation of Electrolyzers of Water</u>

H2NEW for HTE focuses on higher TRL electrolyzer technologies, based on oxide ion conductors

The emphasis is not on new materials but addressing components, materials integration, and manufacturing R&D

ŀ	
U.S	. DEPARTMENT OF ENERGY

Clear, well-defined stack metrics to guide efforts

Electrolyzer Stack Goals by 2025

	LTE PEM	HTE
Capital Cost	\$100/kW	\$100/kW
Elect. Efficiency (LHV)	70% at 3 A/cm ²	98% at 1.5 A/cm ²
Lifetime	80,000 hr	60,000 hr

Makes use of a combination of world-class experimental, analytical, and modeling

Durability/lifetime is most critical, initial, primary focus of H2NEW

- Limited fundamental knowledge of degradation mechanisms including under future operating modes
- Lack of understanding on how to effectively accelerate degradation processes.
- Develop and validate methods to accelerate identified degradation processes to evaluate durability in weeks or months instead of years.
- National labs are ideal for this critical work due to existing capabilities and expertise combined with the ability to freely share research findings.

Hydrogen

Hydrogen Energy Earthshot

"Hydrogen Shot"

"1 1 1" \$1 for 1 kg clean hydrogen in 1 decade

Launched June 7, 2021

Is Hydrogen Shot Achievable? How can we get there?

- R&D needs and technical gaps (panel session)
- Materials and components
- Key cost drivers:
 - Overall efficiency
 - Low electricity price
 - Thermal integration
 - Operating strategy/dynamic response
 - Low CAPEX

Identifying Pathways to Reduce Hydrogen Cost to \$1/kg H₂

- High electrical efficiency
- Thermal integration

earthshots

Hvdroaen

- Manufacturing at scale
- Low-cost manufacturing methods