Bloomenergy

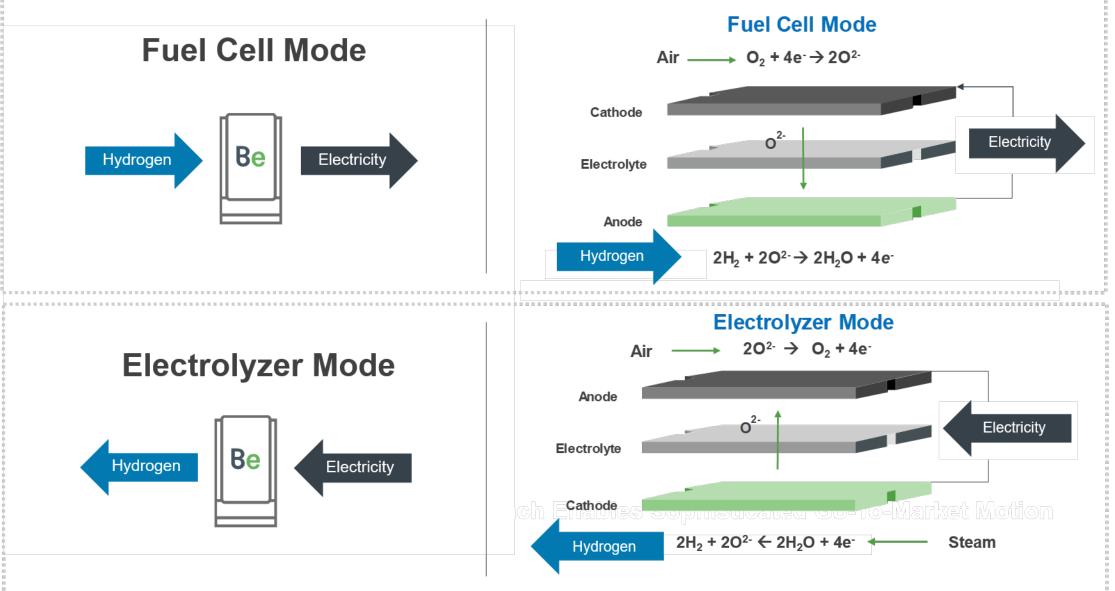
Hydrogen Energy Earthshot Summit

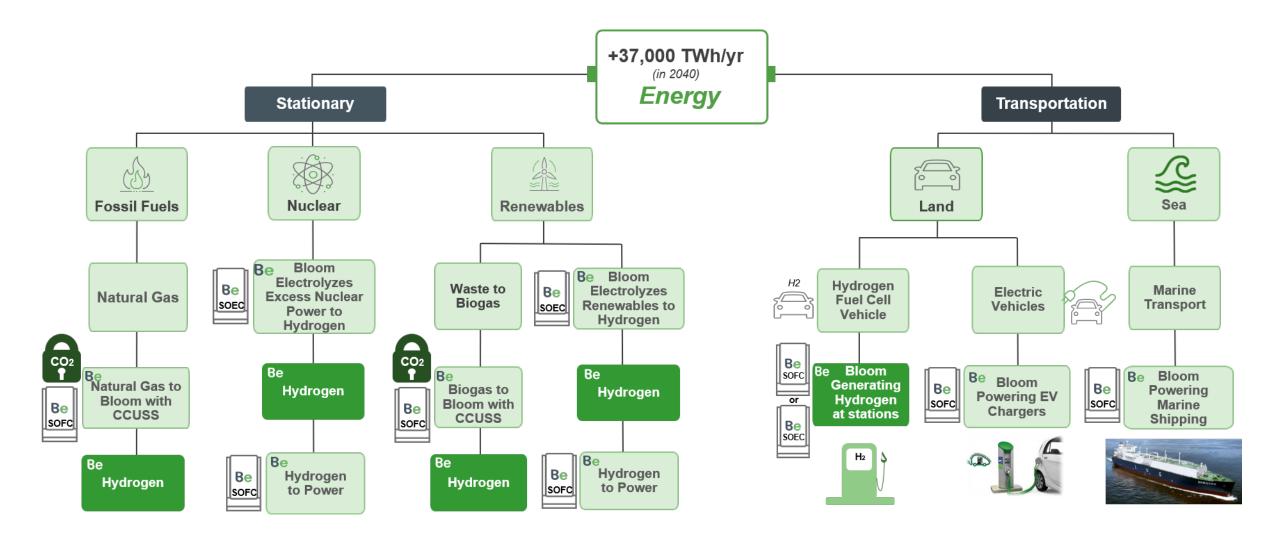
High Temperature Solid Oxide Electrolyzer



VENKAT VENKATARAMAN Chief Technology Officer Executive Vice President of Engineering

August 31 2021

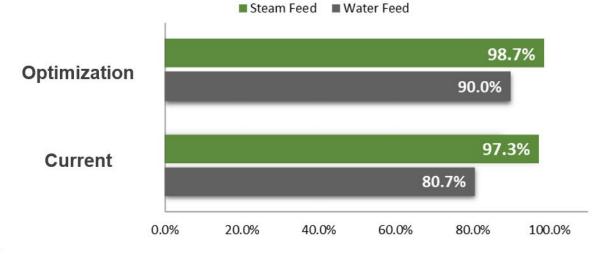

FUEL CELL OVERVIEW

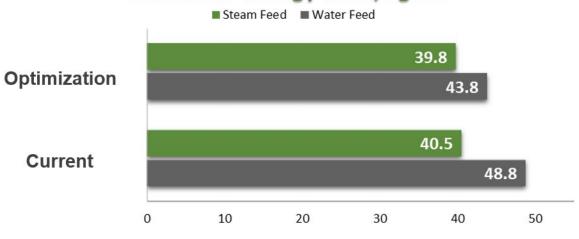


SOLID OXIDE REVERSIBLE CELL

BLOOM'S VISION ON ENERGY TRANSFORMATION Be

BLOOM ELECTROLYZER LAUNCH


Bloom Energy Electrolyzer


Results (Single Module Testing)	Water Feed	Steam Feed
Hydrogen Production (kg/hr)	2.54	2.69
Electrical Energy (kWh/kg H ₂)	48.8	40.5
Electrolyzer Efficiency HHV (%)	80.7	97.3

(Not including downstream compression)

Electrical Efficiency HHV%

Electrical Energy kWh/kg H2

6

Be

HYDROGEN PARTNERSHIP ANNOUNCEMENTS

0

Heliogen

Bloomenergy | Baker Hughes

ANNOUNCEMENT

BAKER HUGHES AND BLOOM ENERGY TO COLLABORATE ON EFFICIENT POWER AND HYDROGEN SOLUTIONS TO ACCELERATE ENERGY TRANSITION **Bloomenergy**

ANNOUNCEMENT

BLOOM ENERGY AND IDAHO NATIONAL LABORATORY TO GENERATE HYDROGEN POWERED BY NUCLEAR ENERGY

ANNOUNCEMENT

Bloomenergy.

BLOOM ENERGY AND SK E&C WIN COMPETITIVE BID FOR KOREA'S CHANGWON RE100 PROJECT

The expanded partnership will supply 100% hydrogen-powered solid-oxide fuel cells and electrolyzers

Bloomenergy

BLOOM ENERGY AND HELIOGEN JOIN FORCES TO HARNESS THE POWER OF THE SUN TO PRODUCE LOW-COST GREEN HYDROGEN

Heliogen

Bloomenergy[®]

FuelCell Energy Overview

ADVANCED FUEL CELL AND ELECTROLYSIS TECHNOLOGIES **FACILITIES AND FLEET Danbury**, **CT** Headquarters/R&D/Serv. **Electrolysis &** Distributed **Distributed Torrington**, **CT** Manufacturing Hydrogen **Energy Storage** Generation Manufacturing/Service Taufkirchen, DE Solid Oxide R&D Calgary, AB ~380 Employees **Deployed Capacity in Field** >255 MW

What's in the box? A new way to capture carbon.

Carbon

Capture

GLOBAL CUSTOMERS

Generated Since 2003

12M+ MWh


Image: Constant of the constant

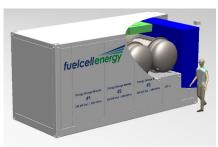
OVER 250 MW OPERATING ON 3 CONTINENTS

Enable The World To Live A Life Empowered By Clean Energy

Solid Oxide Applications

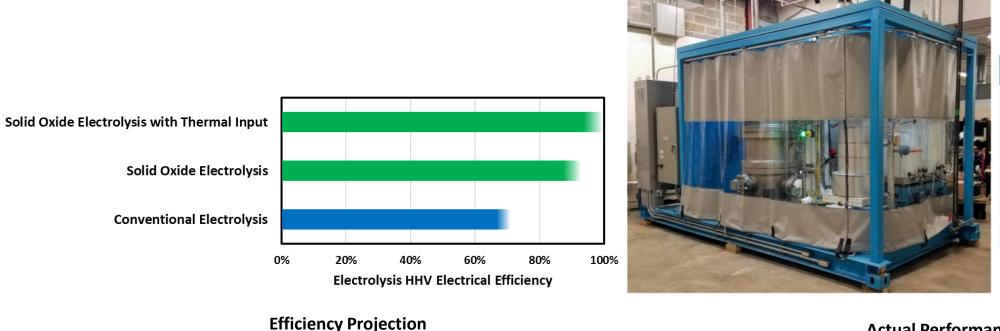
7 kW DC Power Generation 36 kW DC / 25 kg H₂/day electrolysis 350 cells, 17" height

Power Generation Stack Module – Only runs in power generation mode on a wide range of fuels, including natural gas, biofuels, propane, and hydrogen



Electrolysis Stack Module – Produces hydrogen from steam with power input

200kW Power Generation System


Electrolysis 4,000 kg/day H2 from 7.3 MW

Energy Storage Stack Module – Alternates between power generation on hydrogen fuel and electrolysis producing hydrogen from water

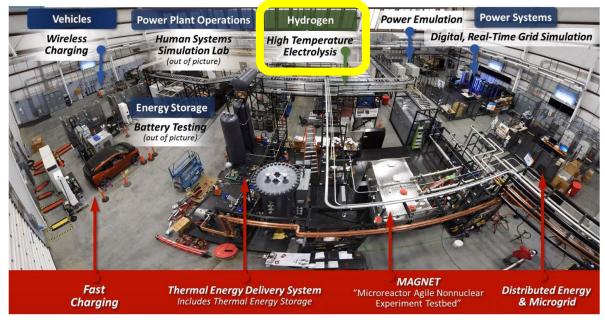
Electrolysis Demonstration in Danbury

System Performance Parameter	Value
Stack Electrical Efficiency (HHV)	112.9 %
System Electrical Efficiency (HHV)	101.8 %
System Total Efficiency (HHV)	90.7 %
Electricity Consumption	38.7 kWh/kg
Thermal Consumption, Simulated	4.7 kWh/kg
Total Energy Consumption	43.4 kWh/kg

More Information...

Actual Performance

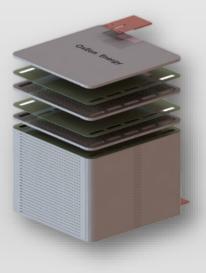
へ 記 📰 3:50 PM 3/23/2021


- Demonstrating target output and efficiency performance
- Will be converted to energy storage system later this year to develop storage control and system technology ahead of first storage prototype systems
- This demonstration of the technology has developed and optimized control approaches and process improvements which will be used in the 250kW INL Demonstration

250kW Demonstration System

- 150 kg/day Hydrogen production from 270kW (or 250kW with thermal input)
- Demonstration of high efficiency prototype system at Idaho National Laboratory (INL) at nuclear plant operating modes, including thermal energy support for ultra high efficiency electrolysis
- Will demonstrate high efficiency without thermal input, and up to 100% efficiency with thermal input

Idaho National Laboratory Test Facility


Packaged prototype of module repeated in larger systems

OxEon Energy, LLC

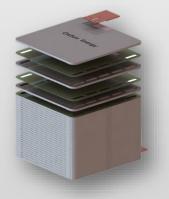
H₂ Shot Summit – Electrolysis Panel Discussions

J. Hartvigsen

August 31, 2021

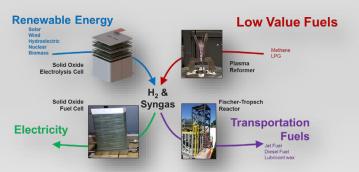
OxEon Energy, LLC North Salt Lake, UT

jjh@oxeonenergy.com


OxEon Energy, LLC

Utah R&D/Mfg Facility – Founded 2017 after successful 30-year collaboration of founders with their previous affiliation

- New 24,000 ft² office, laboratory, and manufacturing facility
- NASA, DOE, DOD and Commercial Funding
- Tape casting, cell and stack production, and testing
- · End-to-end power to synfuels pilot plant in operation



Solid Oxide Fuel Cell and Electrolysis Stacks

- · Longest running solid oxide fuel cell & electrolysis group in world
- Only flight qualified, TRL 9 SOEC unit in history
- 30kW/10kW reversible system test program in process

Fuel Reformation and Generation

- Plasma Reformer H₂ and Syngas for flare curtailment
- Fischer-Tropsch Reactors Modular design for transportation fuel production from H₂ and Syngas

Solid Oxide Fueled Space Exploration

NASA funded flight program

- Only flight qualified SOEC in history
- Only TRL9 SOEC device in history

• First production of oxygen from the Mars Atmosphere

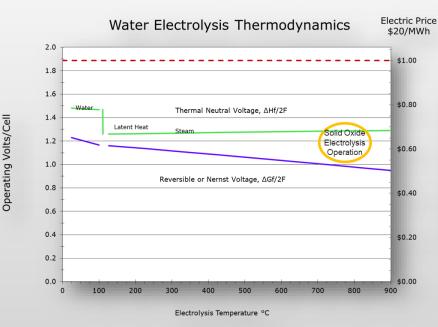
MOXIE SOXE TEAM:

- MIT: Program Prime and Science Team Lead
- JPL: Systems integration
- **OxEon:** Stack development and production
 - TRL 3 to 6 in 18 months!!
 - Hermetically sealed, ruggedized stack capable of withstanding launch, entry, descent and landing

Active OxEon Projects with NASA for Next Generation

- Mars: Liquid Hydrocarbon Fuels from Methane and CO₂
- Lunar: Liquid Propellants for LH₂/LOx-Fueled Cislunar Transport
- SBIR: Cathode Development for Redox Tolerance

Why Solid Oxide Electrolysis?


HZ

\$/kg

Component

Electric Cost

- Solid Oxide nominal operating point 1.28V
 - LHV Thermal Neutral Voltage (100% stack efficiency)
- · Synthesis process integration to raise steam
 - Low temperature heat (~200°C) saves 0.2V or \$0.10/kg
 - 50% more hydrogen per MWh at 1.28V vs 1.91V

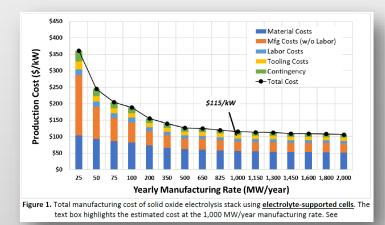
- Electrochemistry Deployment
 - Onboard, on demand
 - Fuel cells & batteries
 - · Low capital utilization factor
 - New distribution & fueling infrastructure
 - Stationary, storable & dispatchable
 - Electrolysis: H₂ to synfuels
 - High capital utilization factor
 - Use of existing infrastructure & fleet
 - Industrial, Residential & Commercial
 - SNG, Hythane, Hydrogen

jjh@oxeonenergy.com

Approach to 1:1:1 Success

\$0.32/kg H₂ remaining in current operation for CapEx – **BREAKTHROUGH OPPORTUNITY**

• Technical Focus:


- **Performance:** Power density improvements for CAPEX reduction. Lifetime enhancement.
- **Design and BOP**: Number of stacks required to displace fossil a driver for footprint and power density

o Grant/Loan Funding

- Stack Manufacturing: Production capacity & costs
- **Demonstrations at scale** to drive manufacturing and create industrial acceptance establishing supply chain

 \circ Policy:

• Incentives to level competitive markets with last century incumbents (fossil resources)

Source: SOEC Stack Mfg Cost Analysis, Strategic Analysis, Apr21

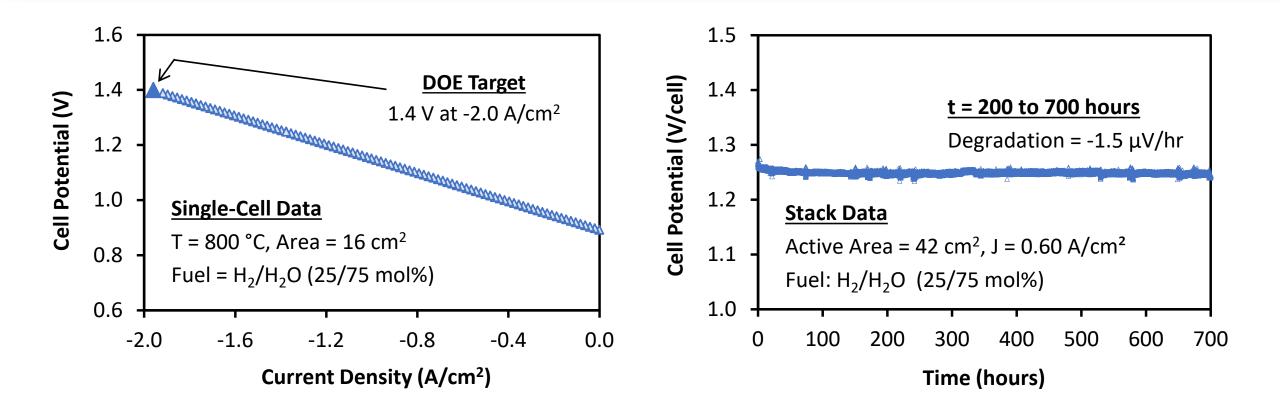
About Nexceris

Nexceris, LLC

- Founded in 1994, privately held, located in Lewis Center, Ohio.
- 25+ years of experience in the solid oxide fuel cell and electrolysis space.
- Vertically integrated manufacturer of solid oxide materials, cells, coatings and stacks.

Proven solid oxide technology provider and stack manufacturer with state-of-the-art high temperature electrolysis capability.

HTE Stack Platforms



Stack power levels based on DOE 2030 target (1.28 V/cell @ -1.5A/cm²). This corresponds to 40-50 kW for full-scale (456-cm²) stack (50-60 cells).

HTE Cell and Stack Testing

New HTE electrode materials enable state-of-the-art performance and stability!

Status and Path Forward

Current Nexceris Activities

- Validation of large-area HTE stack with pressurization capability.
- Implementation of high-performance electrodes and coating technologies in HTE stacks.
- Long-term stack durability testing
- Third-part evaluations of HTE stacks (at INL and other partner sites).

What's Next

- Development and implementation of HTE stack manufacturing technology.
- Long-term stack durability testing
- □ Pilot-scale HTE stack manufacturing.
- System level demonstrations at progressively larger scales.
- Scale up and full-scale HTE stack manufacturing.