

Thermal Conversion Breakout Report Out

Evan Frye, Robert Schrecengost – U.S. DOE-FECM

Hydrogen Shot Summit

Thermal Conversion Breakout - Overview

Objective – The Thermal Conversion with Carbon Capture and Storage Panel Session focuses on the gasification of coal/biomass/plastic waste streams and natural gas to produce clean hydrogen

- Start the dialogue on how to achieve \$1/kg hydrogen production through thermal conversion pathways with CCUS
- Hear from experts in the field on ongoing thermal conversion pathway projects and their thoughts on what can be done to lower the cost of clean hydrogen

Breakout Organization –

- Two expert presentations to "set the stage" for Thermal Conversion Integrated Pathway Analysis
- Five Expert Panels
 - Methane Pyrolysis Panel
 - Plasma Technologies Panel
 - Transformational Natural Gas Conversion Panel
 - FECM Projects on Gasification for Clean Hydrogen Panel
 - Advanced Gasification Pathways to Clean Hydrogen Panel

Thermal Conversion Breakout - By the Numbers - Day 1

Participants -

- Panelists & Moderators from DOE and National Laboratories:
- Panelists from Industry, Academia and Research Institutes
- Attendees 270
 - US 93%

- Non-US
- 7%
- Countries represented 4

Demographics of attendees –

Attendees that self-identified as:	% of respondents
Hydrogen producer	18
Hydrogen R&D	18
Infrastructure or systems developer	11
Both a hydrogen producer and end user	8
Component or technology supplier	8
I am not in the hydrogen industry	37

Thermal Conversion Breakout – Key Points of Discussion – Day 1

Make Prudent Investments Across Technical Readiness Level (TRL) Scale

- Pilot and large demonstrations projects drive momentum in the research community.
- Long lead investments by Government can lower technology risk.
- Government/Private Partnerships are critical.

Incubate Multiple Production Pathways

- Production pathways may have regional applications and benefits.
- Unforeseen end-use needs can spur unanticipated innovation.
- Scale up and reliability are critical.

Continue Hosting Workshops on Hydrogen

- Production/Consumption H2 Hubs
- Bulk H2 Storage
- H2 Production Pathways
- Information on funding mechanism and engagement
- Lifecycle analyses across the entire hydrogen value chain are critical to validate H2's benefits and justify a hydrogen enabled economy.

Thermal Conversion – Day 2

Thermal Conversion Breakout - By the Numbers - Day 2

Participants -

- Panelists & Moderators from DOE and National Laboratories:
- Panelists from Industry, Academia and Research Institutes
- Attendees 210
 - US 95% Non-US 5% Countries represented 6

Demographics of attendees –

Attendees that self-identified as:	% of respondents
Hydrogen producer	14
Hydrogen end user	2
Infrastructure or systems developer	12
Both a hydrogen producer and end user	10
Component or technology supplier	7
I am not in the hydrogen industry	55

Thermal Conversion Breakout – Key Points of Discussion – Day 2

- Multiple Demonstration Projects are needed
 - Pilot and large demonstrations projects drive momentum in the research community.
 - Policy incentives and investments by Government can lower technology risk.
 - Public/Private Partnerships are critical.
- Hydrogen Consumers are Needed to Offtake Hydrogen from Large Demos
 - Policy incentives are needed to offset cost difference during early stage production
- Biomass will be Key to Achieving Net-Zero Hydrogen from Thermal Conversion
 - Regional availability varies.
- Clean Hydrogen will be a Key Driver for Decarbonization of the Overall Economy
 - Medium and heavy duty transportation
 - Industrial heat and process feedstock
 - Demand balancing for electric grid

