Scalable Load Management using Reinforcement Learning

Oak Ridge National Laboratory (ORNL) Helia Zandi, R&D Staff zandih@ornl.gov

Project Summary

	— Key Partners:	
<u>Timeline</u> :		
Start date: 10/9/2018	Southern Company University of	
Planned end date: 9/30/2021	Tennessee, Knoxville	
Key Milestones		
 Develop, formulate, and test the RL algorithm in simulation;9/30/2019 	CAK RIDGE Southern TENINESSEE	
 Test the scalability of the developed load management system;9/30/2020 	National Laboratory Company	
3. Compare RL performance with a golden standard optimization technique;6/30/2021		÷
	Project Outcome:	
Budget:	A scalable load management system that can be	i
Total Project \$ to Date:	deployed by utilities on grid existing infrastructure	
	deployed by dulities on grid existing initiastructure	
• DUE: \$1,824 K		
Cost Share: \$0	A learning-based optimization algorithm that can be	!
Total Project \$:	applied to existing homes and new construction with	
• DOE: \$2,100 K	minimal effort and minimal additional devices	
Cost Share: \$0		-
	\	-

OAK RIDGE National Laboratory

Principal Investigator

Helia Zandi

Kuldeep Kurte

Jeffrey Munk

Borui Cui

Justin Hill

Fran Li

Michael Walsh

Jesse McGaha

Kadir Amasyali

Subprogram Manager

Teja Kuruganti

Challenge: The Effect of Emerging Technologies on the Electric Grid

- Over **75 billion** connected devices predicted to be in use by 2025
- There is an immense opportunity for a management system which can control and coordinate the power use of these devices
- **41%** of the energy consumption in the United States is from buildings
- Advanced sensing and controls have the potential to save energy in buildings up to **40**%

What does the electric grid need?

Approach: Project Overview

Design, develop, and field evaluate a *scalable* and *cost-effective* load management system using **Reinforcement Learning (RL)**

Project Objectives

Objective 1: Develop Reinforcement Learning-based optimization and control methods for understanding energy use patterns and for load scheduling

Objective 2: Develop a scalable load management system to access flexibility in loads

Objective 3: Perform field validation of the software framework and demonstrate benefits of running RL-based optimization and control in residential buildings

ORNL Yarnell Station Research House

Load Management System Software Architecture

- Hierarchical cloud-based multi-agent system (MAS) architecture
- Critical data are identified

Approach: Control Development Approach

Approach: Reinforcement Learning

- Reinforcement learning (RL) method is a type of machine learning method that optimizes the decision-making strategy of an agent within an unknown environment
- RL uses a Markov Decision Process (MDP)
- There are mainly two types of RL method:
 - Value-based RL method: estimates Qvalue of a state-action pair
 - Policy-based RL method: generate probability of all feasible action for current state

Yan Du, Fangxing Li, Jeffrey Munk, Kuldeep Kurte, , Kadir Amasyali, Olivera Kotevska, Helia Zandi "Intelligent Multi-zone Residential HVAC Control Strategy based on Deep Reinforcement Learning" Applied Energy 2021, https://doi.org/10.1016/j.apenergy.2020.116117
 Yan Du, Fangxing Li, Jeffrey Munk, Kuldeep Kurte, , Kadir Amasyali, Olivera Kotevska, Helia Zandi "Multi-task Deep Reinforcement Learning for Intelligent Multi-zone Residential HVAC Control," Electric Power Systems Research 2021, https://doi.org/10.1016/j.apenergy.2020.116117
 Yan Du, Fangxing Li, Jeffrey Munk, Kuldeep Kurte, , Kadir Amasyali, Olivera Kotevska, Helia Zandi "Multi-task Deep Reinforcement Learning for Intelligent Multi-zone Residential HVAC Control," Electric Power Systems Research 2021, https://doi.org/10.1016/j.apenergy.2020.116117
 Yan Du, Fangxing Li, Jeffrey Munk, Kuldeep Kurte, , Kadir Amasyali, Olivera Kotevska, Helia Zandi "Multi-task Deep Reinforcement Learning for Intelligent Multi-zone Residential HVAC Control," Electric Power Systems Research 2021, https://doi.org/10.1016/j.apenergy.2020.116117
 Yan Du, Fangxing Li, Jeffrey Munk, Kuldeep Kurte, , Kadir Amasyali, Olivera Kotevska, Helia Zandi "Multi-task Deep Reinforcement Learning for Intelligent Multi-zone Residential HVAC Control for Residential HVAC Control for Residential Hvac Control for Residential Houses" *MDPI Sustainability as part of the Special Issue Building and Urban Energy Prediction-Big Data Analysis and Sustainable 2020, https://doi.org/10.3390/su12187727*

Approach: HVAC Optimization for 2-Zone Single Family Building

Kuldeep Kurte, Jeffrey Munk, Kadir Amasyali, Olivera Kotevska, Robert Smith, Evan McKee, Yan Du, Borui Cui, Teja Kuruganti, Helia Zandi "Evaluating the Adaptability of Reinforcement Learning based HVAC Control for Residential Houses" Sustainability as part of the Special Issue Building and Urban Energy Prediction-Big Data Analysis and Sustainable 2020, https://doi.org/10.3390/su12187727

Progress: Validation-1: with the Same House as a Simulation

Progress: Validation-1: with the Same House as a Simulation

Day wise cost comparison of operating HVAC with cooling set point (baseline) and pre-trained RL model

Cooling Set Point \rightarrow		73 °F	74 °F	75 °F	(74, 75, 73) $^\circ\mathrm{F}$
Baseline	Energy (kWh)	368.01	333.49	301.37	334.84
	Cost (\$)	56.94	51.91	46.74	51.69
	MOC (min)	0	0	0	97
RL	Energy (kWh)	430.89	390.96	352.72	393.97
	Cost (\$)	40.10	35.46	31.58	36.09
	MOC (min)	0	0	0	79
% Cost reduction		29.57%	31.68%	32.43%	30.17%

Comparison of the cost of operation, energy consumption and MOC for a fixed cooling setpoint baseline and pre-trained

Adaptability Testing

Generating unique building models Validating with synthetic houses

Validation with synthetic house and real house

Cooling Set Point \rightarrow		73 °F	74 °F	75 °F	(74, 75, 73) °F
Baseline ⁻	Energy (kWh)	330.15	297.72	269.20	299.61
	Cost (\$)	50.94	46.00	41.81	45.98
	MOC (min) 0 0		0	97	
RL -	Energy (kWh)	390.75	352.36	317.71	358.73
	Cost (\$)	35.17	30.94	27.41	31.57
	MOC (min)	0	0	0	69
% Cost reduction		30.9%	32.72%	34.44%	31.33%

Validation with real house

- Deployed with Model Pre-Trained on the :
 - Deployed House Data
 - Synthetic house data
- Demonstrated an average saving of 20%

Approach: WH Optimization

<u>Focus:</u> Control a hybrid water heater using demand response (DR) commands for minimum electricity cost under a time-of-use (TOU) electricity pricing policy. rates

Kadir Amasyali, Kuldeep Kurte, Jeffrey Munk, Olivera Kotevska, Robert Smith, Helia Zandi * Double Deep Q-Networks for Optimizing Electricity Cost of a Water Heater*, 2021 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 2021, pp. 1-5, doi: 10.1109/ISGT49243.2021. 9372205.

Progress: RL Training

RL agent #1 (RL # • node temperatures • Electricity prices of n minutes	*1) next 30	 RL agent #2 (RL #2) node temperatures Electricity prices of next 30 minutes Hot water usage volumes of next 30 minutes 	RL agent #3 (• node temperatu • Electricity prices hour • Hot water usage next hour	RL #3) ares a of next e volumes of	RL agent #4 (R • node temperature • Electricity prices of hours • Hot water usage of next two hours	L #4) of next two volumes of	
RL #1 RL #2	RL #3	RL #4	Operation strategy	Look Ahead	Electricity Cost	Element Usage	Average COP _{HP}

Operation strategy	Look Ahead	Electricity Cost	Element Usage	Average COP _{HP}
Baseline	N/A	\$1.36	75 min	4.88
RL agent #2	30 min	\$1.21	89 min	5.25
RL agent #3	1 hour	\$1.03	82 min	5.47
RL agent #4	2 hours	\$0.91	53 min	5.15
MPC #2	30 min	\$1.31	157 min	5.76
MPC #3	1 hour	\$1.04	104 min	5.70
MPC #4	2 hours	\$0.94	84 min	5.61
Day-ahead* optimization	5 days	\$0.81	47 min	5.48

Operation strategy	March 27	March 28	March 29	March 30			
RL	\$0.07	\$0.14	\$0.09	\$0.17			
Baseline	\$0.11	\$0.23	\$0.11	\$0.26			

Cost

- In all days, the RL cost less than the baseline
- RL saved in the range of 18% to 39%
- RL achieved more savings when hot water demand is higher

Comfort

- The upper tank is reserved for users by the manufacturer and are not available for any DR command
- In both cases, the upper tank temperature never went below the comfort range

Developed and demonstrated a learning-based load management system

- Addressing the need for a scalable Grid-interactive Efficient Buildings (GEB) platform
- Delivering towards BTO strategy for GEB seamless connectivity between different devices and utilization of optimization and learning algorithm for optimal scheduling of residential loads.
- □ The data-driven RL algorithm addresses the need for:
 - Control algorithms that are self-aware and self-calibrating
 - Improve energy efficiency, reducing peak demand, and improving comfort.
- □ This project contributes towards the BTO emerging technology goal of reducing U.S. building portfolio's carbon footprint in half by 2035
- RL-based algorithm demonstrated an average demand cost savings of 25% while maintaining the occupant comfort

Stakeholder Engagement

- Weekly meetings
- ORNL has presented the project, findings, and lessons learned to other national laboratories, professional societies, workshops, conferences, seminars, industry representatives.
- Team members are active in professional societies
- Published 14 Journal and conference papers, 1 journal papers under review, and more in process.
- ORNL submits Quarterly Progress Report(QPR) to DOE

Improve the performance of the developed algorithms for both WH and HVAC optimization

Enhance the RL implementation with deploying RL from scratch

Draft a technical report which contains the results of the system integration, data collection, data analysis, algorithms design, lessons learned, and field testing

Thank you

ORNL Helia Zandi, R&D Staff zandih@ornl.gov

ORNL's Building Technologies Research and Integration Center (BTRIC) has supported DOE BTO since 1993. BTRIC is comprised of 50,000+ ft² of lab facilities conducting RD&D to support the DOE mission to equitably transition America to a carbon pollution-free electricity sector by 2035 and carbon free economy by 2050.

Scientific and Economic Results

238 publications in FY20
125 industry partners
27 university partners
10 R&D 100 awards
42 active CRADAs

BTRIC is a DOE-Designated National User Facility

REFERENCE SLIDES

List of Publications

- Yan Du, Fangxing Li, Jeffrey Munk, Kuldeep Kurte, , Kadir Amasyali, Olivera Kotevska, Helia Zandi "Intelligent Multi-zone Residential HVAC Control Strategy based on Deep Reinforcement Learning" Applied Energy 2021 (Grid (Impact Factor: 8.5)), <u>https://doi.org/10.1016/j.apenergy.2020.116117</u>
- Kuldeep Kurte, Jeffrey Munk, Kadir Amasyali, Olivera Kotevska, Robert Smith, Evan McKee, Yan Du, Bori Cui, Teja Kuruganti, Helia Zandi "Evaluating the Adaptability of Reinforcement Learning based HVAC Control for Residential Houses" MDPI Sustainability as part of the Special Issue Building and Urban Energy Prediction-Big Data Analysis and Sustainable 2020, https://doi.org/10.3390/su12187727
- "Approximating Nash Equilibrium in Day-ahead Electricity Market Bidding with Multi-Agent Deep Reinforcement Learning", Yan Du, Fran Li, Helia Zandi, Sonny Xue, Accepted in Journal of Modern Power Systems and Clean Energy (MPCE),2021.
- Yan Du, Fangxing Li, Jeffrey Munk, Kuldeep Kurte, , Kadir Amasyali, Olivera Kotevska, Helia Zandi "Multi-task Deep Reinforcement Learning for Intelligent Multi-zone Residential HVAC Control," Electric Power Systems Research 2021, <u>https://doi.org/10.1016/j.epsr.2020.106959</u>
- Yan Du, Fangxing Li, Helia Zandi, Olivera Kotevska, Kuldeep Kurte, , Kadir Amasyali, Jeffrey Munk, Evan McKee "Model-Based and Data-Driven Heating, Ventilation, and Air Conditioning (HVAC) Control Strategies for Residential Demand Response (DR) Programs," under review IEEE Transactions on Industrial Informatics.
- Kadir Amasyali, Kuldeep Kurte, Jeffrey Munk, Olivera Kotevska, Robert Smith, Helia Zandi " Double Deep Q-Networks for Optimizing Electricity Cost of a Water Heater", IEEE ISGT 2021.
- Kotevska, O., Kurte, K., Munk, J., Johnston, T., McKee, E., Perumalla, K., Zandi, H. " RL-HEMS: Reinforcement Learning-based Home Energy Management System for HVAC Energy Optimization" ASHREA Conference, 2020.
- for HVAC Energy Control", IEEE BigData20 Industry & Government

List of Publications

- Evan McKee, Yan Du, Fangxing Li, Jeffrey Munk, Travis Johnston, Kuldeep Kurte, Olivera Kotevska, Kadir Amasyali, Helia Zandi "Deep Reinforcement Learning for Residential HVAC Control with Consideration of Human Occupancy" IEEE Power & Energy Society (PES) General.
- Kuldeep Kurte, Jeffrey Munk, Kadir Amasyali, Olivera Kotevska, Robert Smith, Helia Zandi "Electricity aware deep reinforcement learning based intelligent HVAC control" ACM 1st International Workshop on Reinforcement Learning for Energ, https://doi.org/10.1145/3427773.3427866
- y Management in Buildings & CitiesKadir Amasyali, Kuldeep Kurte, Jeffrey Munk, Olivera Kotevska, Robert Smith, Helia Zandi "Double Deep Q-Networks for Optimizing Electricity Cost of a Water Heater" ACM 1st International Workshop on Reinforcement Learning for Energy Management in Buildings & Cities
- Xiao Kou, Mohammad Olama, Helia Zandi, Chenang Liu, Saiid Kassaee, Brennan Smith, Ahmad Abu-Heiba, Ayyoub M. Momen, "Bi-Level Optimization for Electricity Transaction in Smart Community WitYang Xiao Kou, Fangxing Li, Jin Dong, Michael Starke, Jeffrey Munk, Yaosuo Xue, Mohammed Olama, Helia Zandi, "A Scalable and Distributed Algorithm for Managing Residential Demand Response Programs using Alternating Direction Method of Multipliers (ADMM)" IEEE Transactions on Smart Grid (Impact Factor: 10.48). DOI: 10.1109/TSG.2020.2995923,
- Xiao Kou, Fangxing Li, Jin Dong, Yang Chen, Mohammed Olama, Helia Zandi "A Comprehensive Scheduling Framework using SP-ADMM for Residential Demand Response with Weather and Consumer Uncertainties," IEEE Transactions on Power Systems 2020 Grid (Impact Factor: 6), <u>10.1109/TPWRS.2020.3029272</u>. Cheh Modular Pump Hydro Storage", ASME conference, 2020.
- Olivera Kotevska, Jeffrey Munk, Kuldeep Kurte, Kadir Amasyali, Robert Smith, Helia Zandi "Methodology for Interpretable Reinforcement Learning Model

Project Budget

Project Budget: \$700K(FY19), \$700K(FY20), \$700K(FY21) Variances: N/A Cost to Date: \$1,824K Additional Funding: None

Budget History									
FY2019- FY 2020 (past)		FY 2021	(current)	FY 2 (plar	2022 nned)				
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share				
\$1,400K	\$0	\$700K	\$0	\$0	\$0				

Project Plan and Schedule

Project Schedule												
Project Start: 10/2018		Completed Work										
Projected End: 9/30/2021		Active Task (in progress work)										
		Milestone/Deliverable (Originally Planned) use for missed								ed		
		Miles	stone/	'Delive	erable	e (Actu	ial) us	e whe	en me	t on ti	me	
		FY2	019			FY2	020			FY2	2021	
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)
Past Work	_											
Q1 Milestone: Draft software architecture specification for the load management system												
Q2 Milestone: Develop field evaluation plan												
Q3 Milestone: Implement software application for												
load management system												
Q4 Milestone: Define and formulate the initial RL												
algorithm												
Q1 Milestone: Initial field validation at Yarnell												
Station										<u> </u>		
Q2 Milestone: Try various RL strategies and												
algorithm improvement										<u> </u>		
Q3 Milestone: Draft a data collection & analysis report												
Q4 Milestone: Scalability testing								-				
Q1 Milestone: Improve RL algoirthm performance												
& its cost svaing and comfort in simulation												
Q2 Milestone: Field test the improved methodology												
at Yarnell station house												
Q3 Milestone: Draft a data collection an danalysis												
report												
Current/Future Work								-				
Q4 Milestone: Improve RL performance and draft a												
technical report												