
# No Vapor-compression, Electrochemical-Loopng Heat Pump (NOVEL HP)





Ray W. Herrick Laboratories, Purdue University; University of Illinois Urbana-Champaign (UIUC) PIs: Davide Ziviani (Lead), James E. Braun, Eckhard A. Groll, Jeffrey S. Moore, Joaquin Rodriguez-Lopez RAs: Junyoung Kim, Yunyan Sun, Abhiroop Mishra, Elias N. Pergantis, Sazzad Hossain PI Email: dziviani@purdue.edu

Made by Junyoung Kim

## **Project Summary**

#### Timeline:

Start date: Jun 1, 2019 (effective Dec 1, 2020) Planned end date: Nov 30, 2023

#### Key Milestones

- 1. Provide quantitative list of key EWF (Mar 21) and ESM requirements (Jun 21)
- 2. Down-selection of most promising ELHP system configuration(s) based on complete ELHP system models, including TEA modeling. (Nov 2021)

#### Budget:

#### Total Project \$ to Date:

- DOE: \$999,778
- Cost Share: \$283,629

#### Total Project \$:

- DOE: \$999,778
- Cost Share: \$283,629

#### Key Partners:

**Carrier Corporation** 

#### Project Outcome:

The overarching goal of this project is to accelerate the development of electrochemical looping heat pump (ELHP) technology, which has the potential to outperform conventional vapor compression systems.

Two major components are investigated:

- New electrochemically active working fluids
- High performance cells

## The final project outcome shall be a TRL-3/4 demonstration of a down-selected ELHP system architecture

### Team



Junyoung Kim Ph.D. Student in Mechanical Engineering, Purdue Univ.



Elias N. Pergantis Ph.D. Student in Mechanical Engineering, Purdue Univ.



James E. Braun, Ph.D. Herrick Professor of Engineering, and Director of the Center for High Performance Buildings, Purdue Univ.



Eckhard A. Groll, Ph.D. William E. and Florence E. Perry Head of Mechanical Engineering, and Reilly Professor of Mechanical Engineering, Purdue Univ.



Davide Ziviani, Ph.D. Assistant Professor of Mechanical Engineering, and Associate Director of the Center for High Performance Buildings, Purdue Univ.

#### Members:

- 5 Professors
  - Mechanical Eng. (3)
  - Chemistry (2)
- 4 PhD students
  - Purdue (2)
  - UIUC (2)
- 1 Post Doc.
  - UIUC (1)



Yunyan Sun Ph.D. Student, Univ. of Illinois at Urbana Champaign Illi



Abhiroop Mishra Ph.D. Student, Univ. of Illinois at Urbana Champaign

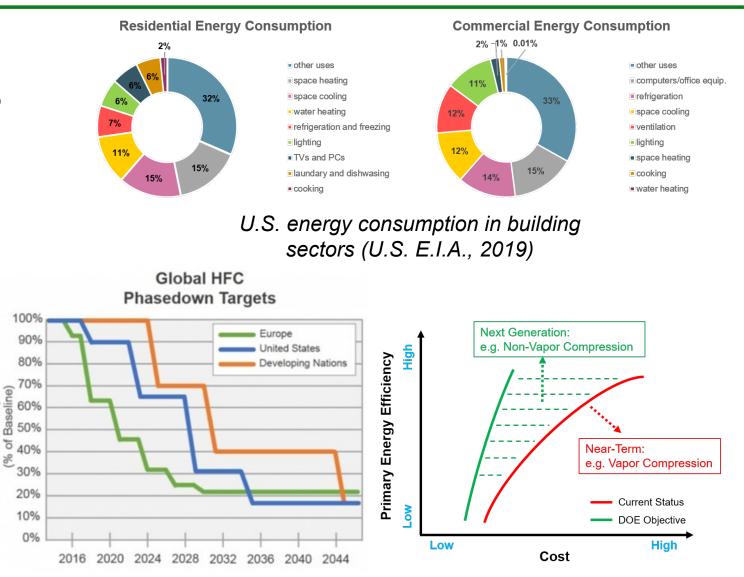


Sazzad Hossain, Ph.D. Post Doc., Univ. of Illinois at Urbana Champaign



Jeffrey S. Moore, Ph.D. Stanley O. Ikenberry Endowed Chair, Professor of Chemistry and Howard Hughes Medical Institute Professor, and Director of Beckman Institute for Advanced Science and technology, Univ. of Illinois at Urbana Champaign

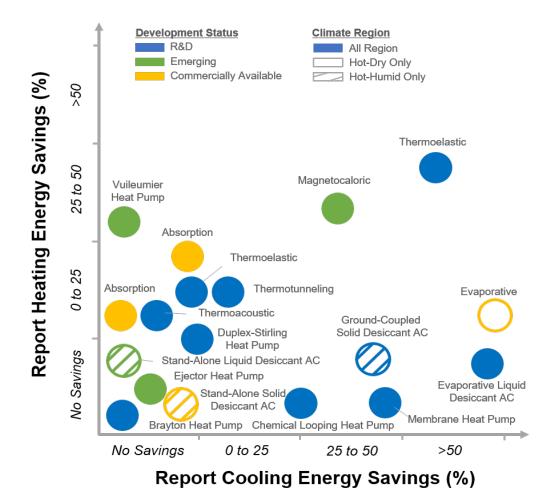



Joaquin Rodríguez-López, Ph.D. Associate Professor of Chemistry, and a Faculty of Beckham Institute for Advanced Science and Technology, Univ. of Illinois at Urbana Champaign

## Challenge

- The buildings' sector in the US accounts for approximately 40% of the primary energy and up to 75% of the electricity produced
- Conventional HVAC&R
   Technologies employ high GWP refrigerants that contribute to global warming
- DOE long term goals:
  - 85% reduction in HFCs by 2035 and transition to low-GWP/natural refrigerants

HFC Cap


Alternative HVAC&R technologies



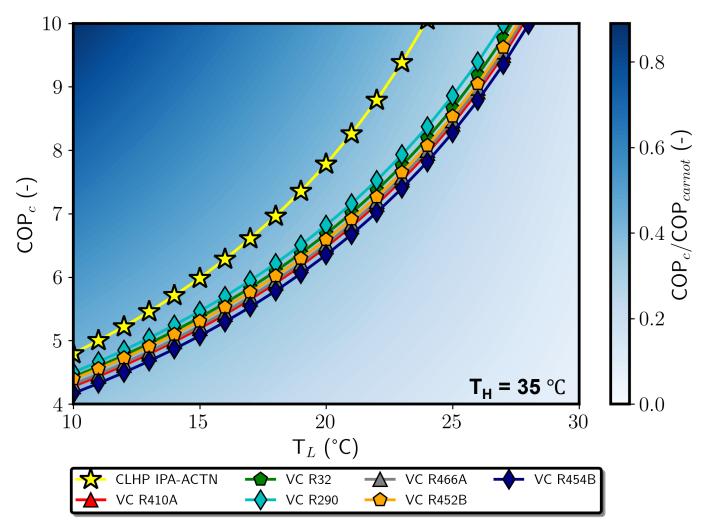
Source: US DOE EERE-BTO

## Challenge (cont'd)

- Alternative HVAC&R Technologies:
  - Different development status
    - Reviewed 18+ non-conventional HVAC&R technologies
  - Chemical Looping Heat Pumps:
    - 20 30 % Energy Saving Reported in ELHP (Cooling Mode)
    - High Scalability by Combining with Existing Fuel Cell and Vapor Compression Technologies
    - Ongoing developments in the fuel cell industry and electrochemistry (including selective membranes)



Source: Modified from Goetzler et al., US DOE BTO EERE Report (2014)


## **Challenges (cont'd)**

 Utilizing Purdue's expertise in advanced HVAC&R, UIUC's expertise in electrochemistry, and Carrier's industrial experience to overcome challenges

| # | Challenge                         | Solution                                                                                                                                                                                                                                                    |
|---|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Working Fluid/Material Selections | <ul> <li>Purdue:</li> <li>Evaluate working fluids using thermodynamic models</li> <li>UIUC:</li> <li>Use exp. characterizations to assess fluid kinetics and reversibility</li> </ul>                                                                       |
| 2 | Designing High Performance Cell   | <ul> <li>Purdue:</li> <li>Use ELHP cell test rig to assess the performance</li> <li>Develop a mechanistic ELHP cell model</li> <li>UIUC:</li> <li>Design, synthesis, and testing of membranes, catalysts, molecules for the electrochemical cell</li> </ul> |
| 3 | Scaling-Up ELHP system            | <ul> <li>Purdue &amp; UIUC:</li> <li>Collaborate with Carrier Corp. for developing scaled-up unit</li> </ul>                                                                                                                                                |

### Impact

Efficiency metrics for ELHP vs. conventional vapor compression HP:  $\bullet$ 



ELHP operating conditions (cooling mode):

$$T_{L} = 10 - 30 \,^{\circ}\text{C}$$

- 
$$T_{SH} = 1 °C$$

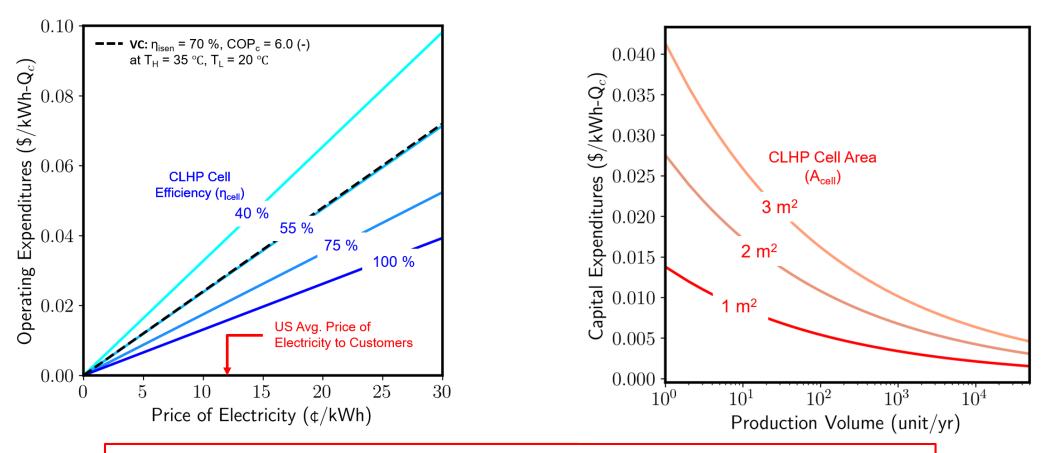
$$- T_{SC} = 0 °C$$

Cell efficiency: 0.6 (-)

Pinch: 5 K -

 $COP_c/COP_{car}$ 

#### VC operating conditions:


$$- T_{L} = 10 - 30 \,^{\circ}C$$

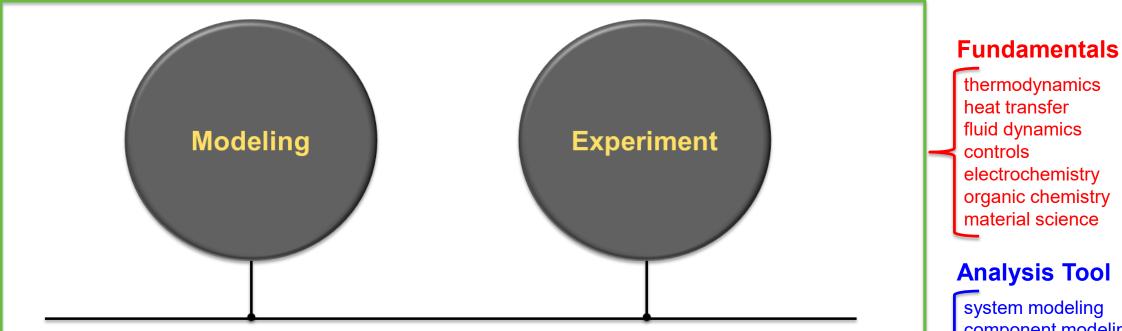
- $T_{SC} = 0 °C$
- Overall isentropic efficiency: 0.7 (-) Pinch: 5 K

Intrinsic system performance for ELHP outweigh (20 - 30 %) that of vapor compression system

### Impact (cont'd)

- TEA results Operating Cost:
  - \$3,000 saving @  $\eta_{cell}$  = 75 %, LT = 10 yr



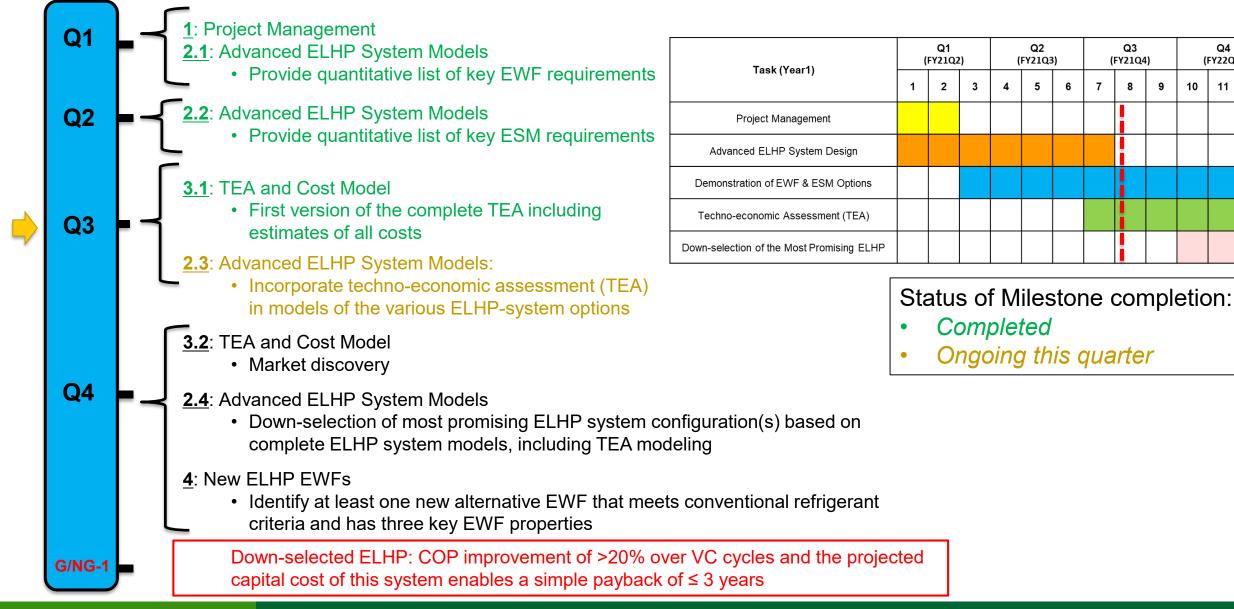

• TEA results – Capital Cost:

**\$ 800** @ PV = 10<sup>4</sup>, A = 1 m<sup>2</sup>, LT = 10 yr

Initial TEA shows the cost of ELHP **can be** economically feasible

## Approach

Goal: Evaluation of ELHP technology




- 2 system models
  - Simplified system model
  - Detailed system model
- 2 cell models
  - Discretized cell model
  - COMSOL cell model
- TEA models

- ELHP cell test rig
  - Working fluid selection
  - Cell performance evaluation
- ELHP system test rig
  - System performance evaluation



### **Progress – (Y1 early-stage): Tasks & Milestones**



Q2

(FY21Q3)

5

6

7

3

4

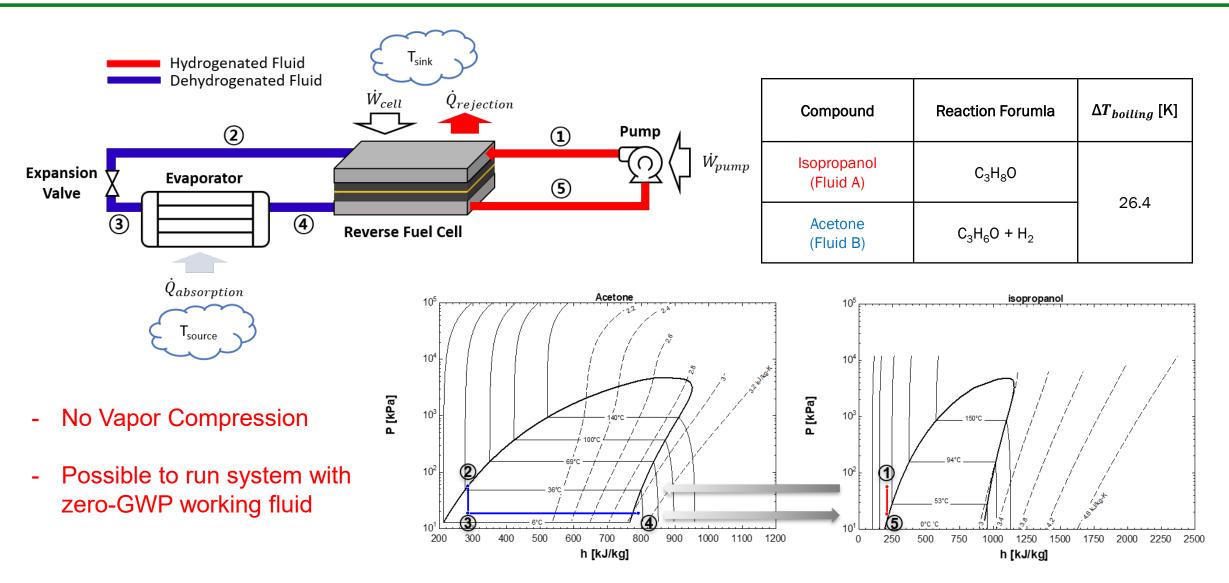
Q3

(FY21Q4)

8

9

10


Q4

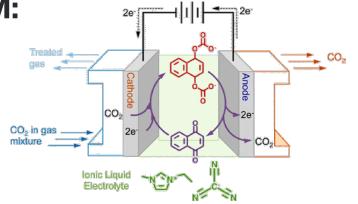
(FY22Q1)

11

12

### **Progress - Electrochemical Looping Heat Pump System**

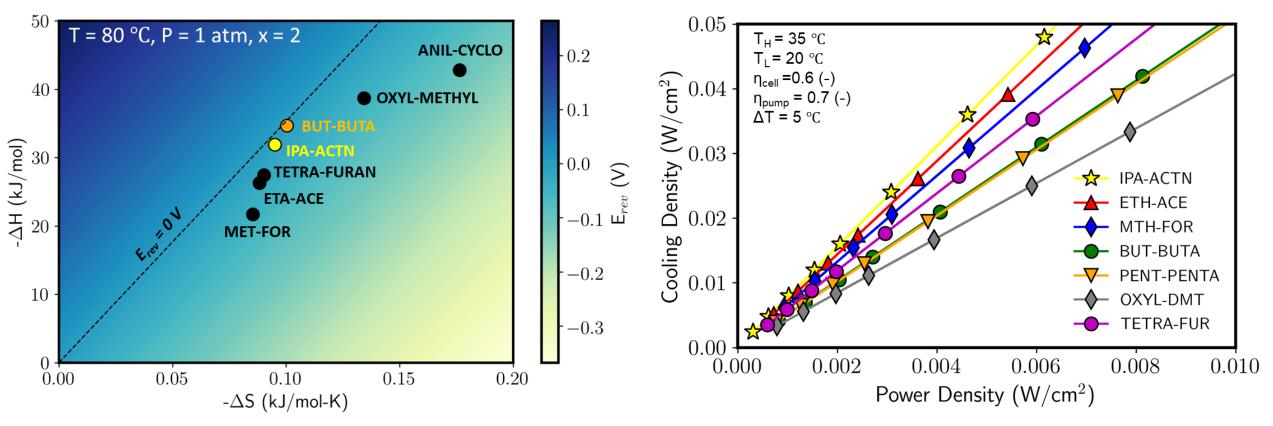



James et al. (2019); Kim et al. (2020)

## Progress – Milestones for Q1 & Q2 Results (1)

• Provide Qualitative and Quantitative Lists of Key Working Fluid Requirements (EWF):

| Quantitative Figure of Merits                                                                                         | Qualitative Figure of Merits                         |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| ΔT <sub>BP</sub><br>T <sub>BP</sub><br>Rate of Reaction (e.g., Current density)<br>Reversibility<br>Stability<br>Cost | Flammability<br>Toxicity<br>Environment-friendly EWF |

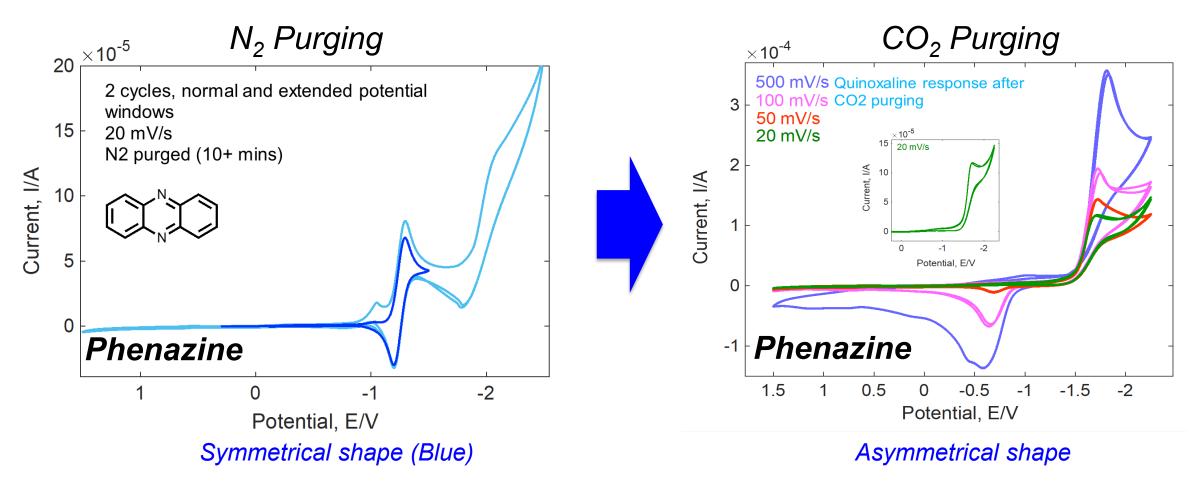

- Initial Design and Identification of Advanced EWF & ESM:
  - Hydrogenation/Dehydrogenation
  - Electrochemical CO<sub>2</sub> Capture and Release



T. A. Hatton et al, ACS Sustainable Chem. Eng. 2015, 3, 1394–1405.

## Progress – Milestones for Q1 & Q2 Results (1)

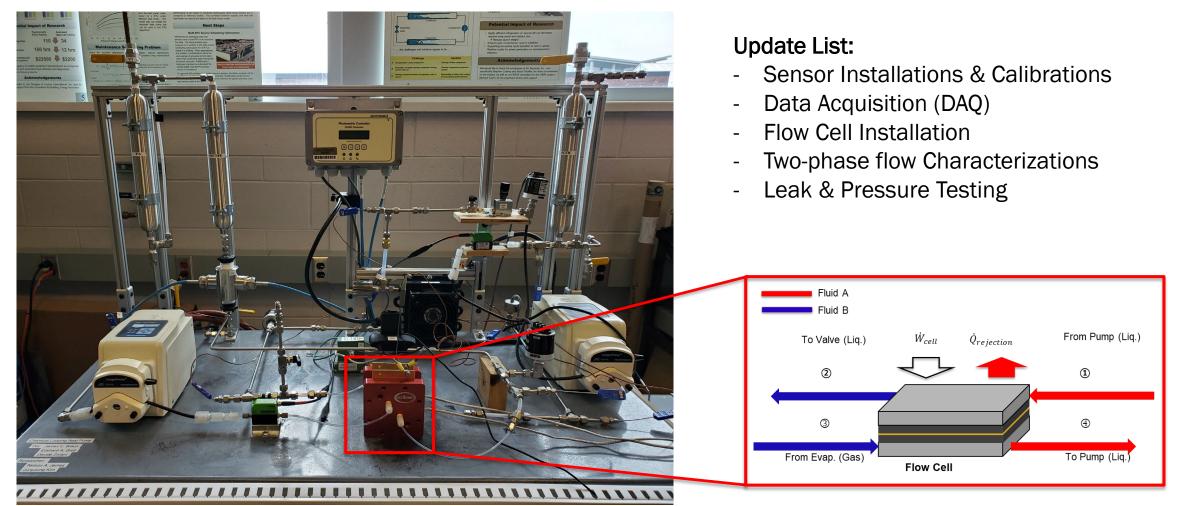
• Provide Quantitative List of Key Working Fluid Requirements (EWF):




- Thermodynamic Assessment of EWF in terms of reversible voltage
- Driving force **close to 0 V** is desirable

• WFs having **high slope** would be desirable for ELHP system

### Progress – Milestones for Q1 & Q2 Results (2)


• Provide Quantitative List of Key Working Fluid Requirements (ESM):



Reversibility of ELHP ESM for CO<sub>2</sub> refrigerants – Symmetric shape is desirable for reversibility & durability

## **Progress – Preliminary Study for Y2**

- Upgraded ELHP Cell Test Rig at Herrick Lab.
  - Pioneered by Dr. Nelson James and advanced by Junyoung Kim



### **Stakeholder Engagement**

- Purdue and UIUC teams have interacted with Carrier Corporation
  - Key contacts: Larry Burns, Hafez Raeisi Farad
- Discuss a future scalability of ELHP system (Y3) with Carrier Corp.
- Regular research meeting with Carrier Corporation

## Remaining Project Work (Q3/Q4)

#### • Demonstration of EWF & ESM Options

- Modeling: evaluate desired thermodynamic properties
- Exp.: evaluate kinetics of working fluids

#### • Technoeconomic Analysis (TEA):

- Extend the model developed during Q2
- Combine TEA with system model
- Estimate payback period

| Task (Year1)                              |  | Q1<br>(FY21Q2) |   | Q2<br>(FY21Q3) |   |   | Q3<br>(FY21Q4) |   |   | Q4<br>(FY22Q1) |    |    |
|-------------------------------------------|--|----------------|---|----------------|---|---|----------------|---|---|----------------|----|----|
|                                           |  | 2              | 3 | 4              | 5 | 6 | 7              | 8 | 9 | 10             | 11 | 12 |
| Project Management                        |  |                |   |                |   |   |                | I |   |                |    |    |
| Advanced ELHP System Design               |  |                |   |                |   |   |                |   |   |                |    |    |
| Demonstration of EWF & ESM Options        |  |                |   |                |   |   |                |   |   |                |    |    |
| Techno-economic Assessment (TEA)          |  |                |   |                |   |   |                |   |   |                |    |    |
| Down-selection of the Most Promising ELHP |  |                |   |                |   |   |                |   |   |                |    |    |

# **Thank You**

Ray W. Herrick Laboratories, Purdue University; University of Illinois Urbana-Champaign (UIUC) Pls: Davide Ziviani (Lead), James E. Braun, Eckhard A. Groll, Jeffrey S. Moore, Joaquin Rodriguez-Lopez RAs: Junyoung Kim, Yunyan Sun, Abhiroop Mishra, Elias N. Pergantis, Sazzad Hossain Pl Email: dziviani@purdue.edu

### **REFERENCE SLIDES**

### **Project Budget**

Project Budget: \$1,283,407 (Fed: \$999,778; Cost-share: \$283,629).
Variances: None.
Cost to Date: Identify what portion of the project budget has been expended to date.
Additional Funding: None.

| Budget History                   |            |           |             |                                     |            |  |  |  |  |  |
|----------------------------------|------------|-----------|-------------|-------------------------------------|------------|--|--|--|--|--|
| June 1, 2019 – FY 2020<br>(past) |            | FY 2021   | . (current) | FY 2022 – Nov 30, 2022<br>(planned) |            |  |  |  |  |  |
| DOE                              | Cost-share | DOE       | Cost-share  | DOE                                 | Cost-share |  |  |  |  |  |
| \$O                              | \$0        | \$309,721 | \$90,139    | \$330,745                           | \$98,184   |  |  |  |  |  |

### **Project Plan and Schedule**

|                                      |              | Milestone/Deliverable (Originally Planned) use for missed |                 |              |              |              |              |              |              |              |              |              |
|--------------------------------------|--------------|-----------------------------------------------------------|-----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                                      |              | Milestone/Deliverable (Actual) use when met on time       |                 |              |              |              |              |              |              |              |              |              |
|                                      |              | FY2                                                       | 2021            |              | FY2022       |              |              |              | FY2023       |              |              |              |
| Task                                 | Q1 (Dec-Dec) | Q2 (Jan-Mar)                                              | Q3 (Apr-Jun)    | Q4 (Jul-Sep) | Q1 (Oct-Dec) | Q2 (Jan-Mar) | Q3 (Apr-Jun) | Q4 (Jul-Sep) | Q1 (Oct-Dec) | Q2 (Jan-Mar) | Q3 (Apr-Jun) | Q4 (Jul-Sep) |
| Past Work                            |              |                                                           |                 |              |              |              |              |              |              |              |              |              |
| Task 1: Program Management           |              |                                                           | $\blacklozenge$ |              |              |              |              |              |              |              |              |              |
| Task 2: Advanced ELHP System Designs |              |                                                           |                 |              |              |              |              |              |              |              |              |              |
| Task 3: Market Transformation        |              |                                                           |                 |              |              |              |              |              |              |              |              |              |
| Task 4: New ELHP EWFs                |              |                                                           |                 |              |              |              |              |              |              |              |              |              |
| Current/Future Work                  |              |                                                           |                 |              |              |              |              |              |              |              |              |              |
| Task 2: Advanced ELHP System Designs |              |                                                           |                 |              |              |              |              |              |              |              |              |              |
| Task 3: Market Transformation        |              |                                                           |                 |              |              |              |              |              |              |              |              |              |
| Task 4: New ELHP EWFs                |              |                                                           |                 |              |              |              |              |              |              |              |              |              |

G/NG

 Initial ELHP system models for ESM was developed for Q1

 ESM demonstration have been done by experiment, not model

Developing an advanced ESM model is ongoing task