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Project Summary

Timeline:

Start date: Jun 1, 2019 (effective Dec 1, 2020)
Planned end date: Nov 30, 2023

Key Milestones

1. Provide quantitative list of key EWF (Mar 21) and ESM
requirements (Jun 21)

2. Down-selection of most promising ELHP system
configuration(s) based on complete ELHP system
models, including TEA modeling. (Nov 2021)

Budget:

Total Project $ to Date:
 DOE: $999,778

» Cost Share: $283,629
Total Project $:

 DOE: $999,778

» Cost Share: $283,629
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Key Partners:

Carrier Corporation

Project Outcome:

The overarching goal of this project is to accelerate the
development of electrochemical looping heat pump (ELHP)
technology, which has the potential to outperform
conventional vapor compression systems.

Two major components are investigated:
* New electrochemically active working fluids
* High performance cells

The final project outcome shall be a TRL-3/4 demonstration
of a down-selected ELHP system architecture
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Challenge

Residential Energy Consumption Commercial Energy Consumption
* The buildings' sector in the US ‘“ ‘W o ot
accounts for approximately 40% ‘ \ . |

= refrigeration

of the primary energy and up to e
75% of the electricity produced audry and dsnuasng . s
e Conventional HVAC&R U.S. energy consumption in building
Technologies employ high GWP e CCorS (O BLAL 2079
. . obDa
refrigerants that contribute to Phasedown Targets
100%

e Europe A Next Generation:

global warming
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2035 and transition to low- ~ “u i o Vepor Compresion
GWP/natural refrigerants gt - : — oot e
— Alternative HVAC&R s e e o s ow — o
technologies Source: US DOE EERE-BTO
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Challenge (cont’d)

* Alternative HVAC&R Technologies:

— Different development status

 Reviewed 18+ non-conventional
HVAC&R technologies

— Chemical Looping Heat Pumps:

e 20 - 30 % Energy Saving Reported
in ELHP (Cooling Mode)

* High Scalability by Combining with
Existing Fuel Cell and Vapor
Compression Technologies

* Ongoing developments in the fuel
cell industry and electrochemistry
(including selective membranes)
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Report Heating Energy Savings (%)
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Report Cooling Energy Savings (%)

Source: Modified from Goetzler et al.,
US DOE BTO EERE Report (2014)




Challenges (cont'd)

e Utilizing Purdue’s expertise in advanced HVAC&R, UIUC’s expertise in
electrochemistry, and Carrier’s industrial experience to overcome
challenges

_# Challenge

Purdue:
- Evaluate working fluids using thermodynamic models

UIUC:
- Use exp. characterizations to assess fluid kinetics and reversibility

1 Working Fluid/Material Selections

Purdue:
- Use ELHP cell test rig to assess the performance
Develop a mechanistic ELHP cell model

UIUC:
- Design, synthesis, and testing of membranes, catalysts, molecules

for the electrochemical cell

Purdue & UIUC:
- Collaborate with Carrier Corp. for developing scaled-up unit

2 Designing High Performance Cell

3 Scaling-Up ELHP system
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Impact

» Efficiency metrics for ELHP vs. conventional vapor compression HP:

10 ELHP operating conditions (cooling
mode):
0.8 . T,=35°C
) . T,=10-30°C
— - Tgy=1°C
8 0.6 — - Tge=0°C
— § - Cell efficiency: 0.6 (-)
— S - Pump efficiency: 0.7 (-)
a7 0.4 S - Pinch: 5K
e 5 VC operating conditions:
6 & - T,=35°C
~ - T,=10-30°C
! 0.2 C Te=1°C
- Tge=0°C
T, =35°C - Oyerall isentropic efficiency: 0.7 (-)
44 . . . 0.0 Pinch: 5 K
10 15 20 25 30 —
T., (°C) Intrinsic systgm performance for
¢ CLHP IPAACTN  —@- VCR32  —A— VCR466A —@= VC R454B ELHP outweigh (20 — 30 %) that of
—A— VC R410A ~0— VCR200 - VCR452B vapor compression system
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Impact (cont'd)

* TEA results - Operating Cost: * TEA results - Capital Cost:

- $3,000saving@n,, = 75 %, LT =10 yr — $800@PV=104A=1m2 LT=10yr
0.10
=== VC: Njon, = 70 %, COP_ = 6.0 (-)

—~ atTr,_]|=35°C,T|_=20°C 0.040 1

g 3

< 0.08 1 < 0.035 -

< <
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o CLHP Cell o 0.025 (Acen)

2 Efficiency (Ncer) = ,

2 wi 2 020 om

2 (.04 1 o5 % 75 % 7 5

X %

H 100 % 2 0.015 1 2 m?

0 i \

= —

5 £ 0.010- )

© .02 2 1m

9]

o US Avg. Price of 8

o Electricity to Customers 0.005 \

0.00 ; — r , 0.000

Price of Electricity (¢/kWh) Production Volume (unit/yr)

Initial TEA shows the cost of ELHP can be economically feasible
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Approach

* Goal: Evaluation of ELHP technology

Modeling

Experiment

Fundamentals

g

thermodynamics
heat transfer

fluid dynamics
controls
electrochemistry
organic chemistry

2 system models

- Simplified system model

- Detailed system model
2 cell models

- Discretized cell model

- COMSOL cell model
TEA models

ELHP cell test rig
- Working fluid selection
- Cell performance evaluation
ELHP system test rig
- System performance
evaluation

material science

S —

Analysis Tool

system modeling

component modeling

cost modeling

electrochemical characterizations
surface topology analysis
spectroscopy
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optimizations
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Progress - (Y1 early-stage): Tasks & Milestones

1: Project Management

2.1: Advanced ELHP System Models ;w?faz) (FY?1203) (FY?13Q4) (Fv?;ol)
 Provide quantitative list of key EWF requirements Task (Year1)
1 2 3 4 5 6 7 8 9 10 11 12
~d 2.2: Advanced ELHP System Models Project Management :
» Provide quantitative list of key ESM requirements [
S— Advanced ELHP System Design I
M: TEA and COSt Model Demonstration of EWF & ESM Options
—  First version of the complete TEA including Techno-economic Assessment (TEA)
estimates of all costs 0
Down-selection of the Most Promising ELHP I
2.3: Advanced ELHP System Models:
— * Incorporate techno-economic assessment (TEA) Stat f Milest letion:
in models of the various ELHP-system options a(l:JS 0 | l!eds one compietion:.
s ° omplete
3.2: TEA and Cost Model p. .
. Market discovery * Ongoing this quarter

—< 2.4: Advanced ELHP System Models
* Down-selection of most promising ELHP system configuration(s) based on
complete ELHP system models, including TEA modeling

4: New ELHP EWFs
* ldentify at least one new alternative EWF that meets conventional refrigerant
— criteria and has three key EWF properties

Down-selected ELHP: COP improvement of >20% over VC cycles and the projected
capital cost of this system enables a simple payback of < 3 years
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Progress - Electrochemical Looping Heat Pump System

mssssm Hydrogenated Fluid
s Dehydrogenated Fluid
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zero-GWP working fluid
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Progress - Milestones for Q1 & Q2 Results (1)

* Provide Qualitative and Quantitative Lists of Key Working Fluid

Requirements (EWF):
Quantitative Figure of Merits Qualitative Figure of Merits
ATgp
TBP -
Rate of Reaction (e.g., Current density) Flammgblllty
. Toxicity
Reversibility Environment-friendly EWF
Stability y
Cost

 Initial Design and Identification of Advanced EWF & ESM:
* Hydrogenation/Dehydrogenation

* Electrochemical CO, Capture and Release

T. A. Hatton et al, ACS Sustainable Chem. Eng. 2015, 3, 1394-1405.
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Progress - Milestones for Q1 & Q2 Results (1)

* Provide Quantitative List of Key Working Fluid Requirements (EWF):

50

T=80°,P=1atm,x=2

40

20

-AH (kJ/mol)

10

® BUT-BUTA

® pA-ACTN
RAN

0.00 0.05

0.10 0.15 0.20
-AS (kJ/mol-K)

« Thermodynamic Assessment of EWF in
terms of reversible voltage
» Driving force close to 0 V is desirable
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WFs having high slope would be

desirable for ELHP system




Progress - Milestones for Q1 & Q2 Results (2)

* Provide Quantitative List of Key Working Fluid Requirements (ESM):

10 N, Purging a0t CO, Purging
2 cycles, normal and extended potential 500 mV/s Quinoxaline response after
. 3L CO2 purging
windows 50 mV/s
15+ 20 mV/s 7 20 mV/s 15x‘IO'5
N2 purged (10+ mins) 5l somis
< < v |
— 10} Ny —
5 ©: D T
[ - N o
S >
O 5t O
O L
0 - i I ]
Phenazine 1rPhenazine
1 0 1 2 15 1 05 0 05 -1 -15 -2
Potential, E/V Potential, E/V
Symmetrical shape (Blue) Asymmetrical shape

* Reversibility of ELHP ESM for CO, refrigerants — Symmetric shape is desirable for reversibility &
durability
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Progress - Preliminary Study for Y2

 Upgraded ELHP Cell Test Rig at Herrick Lab.

— Pioneered by Dr. Nelson James and advanced by Junyoung Kim

i} -
1
- |
|
|
e 5 EEs Tl
= . iz S Rn

0 e

] %

Update List:

- Sensor Installations & Calibrations
- Data Acquisition (DAQ)

- Flow Cell Installation

- Two-phase flow Characterizations
- Leak & Pressure Testing

s Fluid A
To Valve (Lig.) Ween Orejection From Pump (Liq.)
@ @
—@%@—
From Evap. (Gas) To Pump (Liq.
Flow Cell

I/ /7777777000000 000l iunnnununieeienNy\Yy
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Stakeholder Engagement

 Purdue and UIUC teams have interacted with Carrier Corporation
— Key contacts: Larry Burns, Hafez Raeisi Farad

* Discuss a future scalability of ELHP system (Y3) with Carrier Corp.

* Regular research meeting with Carrier Corporation
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Remaining Project Work (Q3/Q4)

* Demonstration of EWF & ESM Options

— Modeling: evaluate desired thermodynamic properties
— EXp.: evaluate kinetics of working fluids

* Technoeconomic Analysis (TEA):
— Extend the model developed during Q2
— Combine TEA with system model

' : Q1 Q2 ‘Es Q4
— Estimate payback period (Fr2102) (FY2103) b1as) (FY2a)
Task (Year1) i
1 2 3 4 5 6 7 Is 9 10 | 1 12
1
Project Management :
Advanced ELHP System Design :
Demonstration of EWF & ESM Options
Techno-economic Assessment (TEA) l
-
Down-selection of the Most Promising ELHP :
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REFERENCE SLIDES
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Project Budget

Project Budget: $1,283,407 (Fed: $999,778; Cost-share: $283,629).

Variances: None.
Cost to Date: Identify what portion of the project budget has been expended to date.

Additional Funding: None.

Budget Histor

FY 2022 - Nov 30, 2022

June 1, 2019- FY 2020 FY 2021 (current)
(planned)

(past)

DOE Cost-share DOE Cost-share DOE Cost-share
$0 $0 $309,721 $90,139 $330,745 $98,184
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Project Plan and Schedule

’ Milestone/Deliverable (Originally Planned) use for missed
0 Milestone/Deliverable (Actual) use when met on time
FY2021 FY2022 FY2023
) - = — < e — — - - — —
O ! < v 45 ! o v 4 1 = v g
Task Sls |22 |8z |22 |8 |z |2 |2 + Initial ELHP system models for
R R R R R EREE ESM was developed for Q1

Task 1: Program Management  ESM demonstration have been
Task 2: Advanced ELHP System Designs done by experiment, not

Task 3: Market Transformation model

Task 4: New ELHP EWFs

: e Wo * Developing an advanced ESM

Task 2: Advanced ELHP System Designs
Task 3: Market Transformation model is ongoing task

Task 4: New ELHP EWFs
G/NG
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Sheet1

		Project Schedule

		Project Start:  December 30, 2020				Completed Work

		Projected End: November 30, 2023				Active Task (in progress work)

						Milestone/Deliverable (Originally Planned) use for missed milestones

						Milestone/Deliverable (Actual) use when met on time

				FY2021								FY2022								FY2023

		Task		Q1 (Dec-Dec)		Q2 (Jan-Mar)		Q3 (Apr-Jun)		Q4 (Jul-Sep)		Q1 (Oct-Dec)		Q2 (Jan-Mar)		Q3 (Apr-Jun)		Q4 (Jul-Sep)		Q1 (Oct-Dec)		Q2 (Jan-Mar)		Q3 (Apr-Jun)		Q4 (Jul-Sep)

		Past Work

		Task 1: Program Management

		Task 2: Advanced ELHP System Designs

		Task 3: Market Transformation 

		Task 4: New ELHP EWFs 

		Current/Future Work

		Task 2: Advanced ELHP System Designs

		Task 3: Market Transformation 

		Task 4: New ELHP EWFs 
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