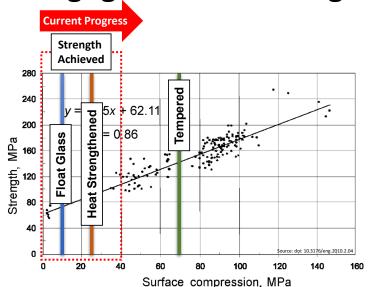

Pulse Strengthened and Laser Edge Sealed Vacuum Insulation Glazing

3D VIG Abaqus Model



Laser – Assisted Hermetic Seal

Through Glass Bonding

Plasma Arc Lamp Processing for **Emerging Windows Technologies**

Oak Ridge National Laboratory Pooran Joshi, Senior Scientist (865) 394-4509, joshipc@ornl.gov

Project Summary

Timeline:

Start date: October 1, 2018 Planned end date: December 31, 2021

Key Milestones

- 1. Go/No-Go: Demonstration of glass strengthening through pulse thermal processing; 09/30/2019
- 2. Go/No-Go: Finalization of VIG components meeting design criterion; 09/30/2020
- 3. Final prototype VIG sample: Performance and reliability analysis under various operating conditions; 12/31/2021 (No-cost Extension)

Budget:

Total Project \$ to Date:

- DOE: \$1,365,000
- Cost Share: No

Total Project \$:

- DOE: \$1,500,000
- Cost Share: No

Key Partners:

WinBuild, Inc.

Project Outcome:

Scalable, low-cost processing strategy for glass strengthening and sealing is proposed to impact the thermal performance of insulating glass units. A combination of large area photonic processing, additive manufacturing, and laser encapsulation techniques is proposed to realize a vacuum glazing technology meeting the cost, performance, reliability, and throughput demands.

Team

Dr. Pooran Joshi: Senior R&D staff with over 20 years of experience in low-temperature materials, process technology, and device integration for flexible electronics, display technology, and photovoltaics

Dr. Mahabir Bhandari: R&D staff with research focus on building components and integration, including fenestration development and performance characterization

Mr. Thomas Muth: R&D staff; Over 28 years of experience career converting metals into useful forms for performance advantage and profit

Dr. Sarma Gorti: Senior R&D staff; Expertise in modeling and simulation of metals and alloys

Dr. Ahmed Hassen: R&D staff; Experience in composite material manufacturing, characterization and qualifications methods

Mr. Bipin Shah: Over 23 years of experience in building energy efficiency research and technology advancement

Lingyue Zhang (PhD Student): Laser processing

Wenyuan Zhu (PhD Student): VIG Modeling

Dr. Seungha Shin: Professor, University of Tennessee, Expertise in Multiscale, Multiphysics simulations

WinBuild

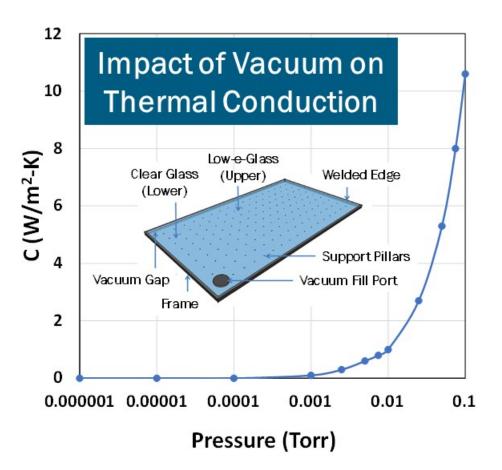
UTK

Challenge

Problem Definition

Windows only take up between 5-10% of a home's total surface area that is exposed to outside temperatures but account for as much as 30-45% of the heat lost in a home.

Opportunity

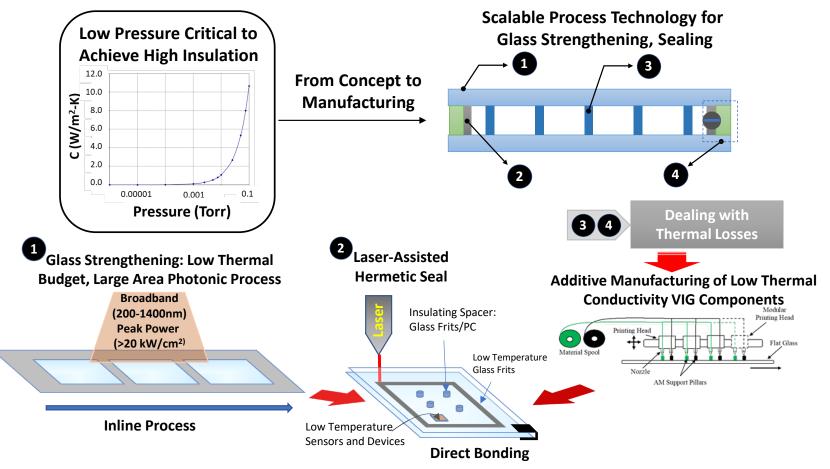

- → Scout estimates the heating energy use associated with windows conduction as 2 Quads.
- → Vacuum insulated glazing (VIG) for residential and commercial use is a promising technology to meet the rigorous R-10 thermal performance requirements.

Technology Challenges

→ Key challenges of cost, performance, and reliability must be overcome for technology adoption and widespread deployment.

Proposed Concept

→ Scalable, low-cost processing strategy for glass strengthening and sealing is proposed to realize a VIG technology meeting the cost, performance, reliability, and throughput demands.


Approach

Approach: Scalable, low-cost processing strategy for glass strengthening and sealing is proposed to impact the thermal performance of insulating glass units.

→ A combination of large area photonic processing, additive manufacturing, and laser encapsulation techniques is proposed to realize a vacuum glazing technology meeting the cost, performance, reliability, and throughput demands.

Specific R&D Focus Areas Include:

- Modeling of VIG components to analyze impact on heat flow and energy saving opportunity
- Pulse thermal processing for inline glass strengthening for use by a glass manufacturer
- Low thermal budget laserassisted hermetic sealing of printed edge seal
- Additive manufacturing of VIG components: flexible edge seal; pillars, custom valve for edge incorporation

Impact

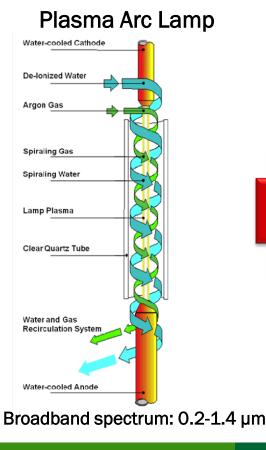
VIG Technology Penetration

- VIG Market Projected to reach USD 6.59 Billion by 2027
- Demand for Green Buildings: Reduction of energy consumption of windows up to 75% compared to a single glazed unit
- Strict regulations on carbon emissions are likely to propel VIG market for building & construction

Impact of Project

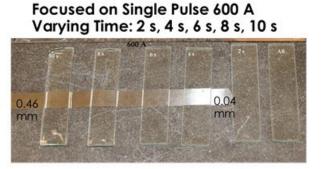
- Scalable, high throughput process to impact glass strength independent of glass thickness
- Low thermal budget laser-assisted hermetic sealing eliminating high temperature processing steps
- Additive manufacturing and integration of VIG components

Market Projection



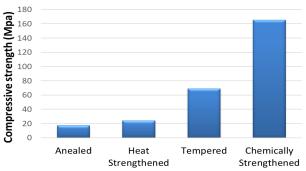
Impact on Building Technology: The low-cost VIG unit would contribute significantly towards reducing energy consumption; even with 30% market adoption, the savings would be more than 600 TBtu

Glass Strengthening: Plasma Arc Lamp Processing


Goals

- → Low thermal budget Pulse Thermal Process to impact Glass Strength: Rapid, Clean, Noncontact
- → Scalable Solution for Future Technology : Impact Compressive Strength of Thin Glass (~0.7mm)

Process Window



Polarized Light Images

Dimensional change with Increased Concavity

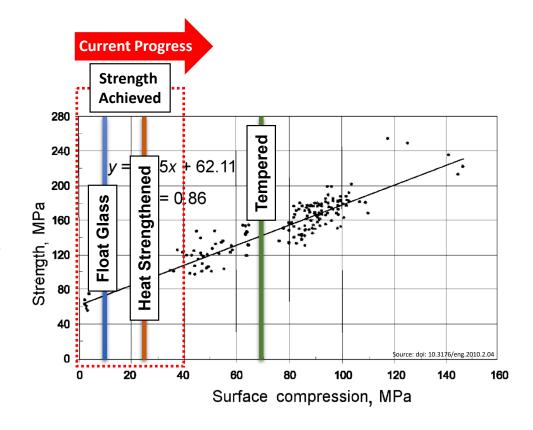
Current Technology

Increased cupping with exposure time

→ PAL shows Controlled Influence on the Glass Stress Condition

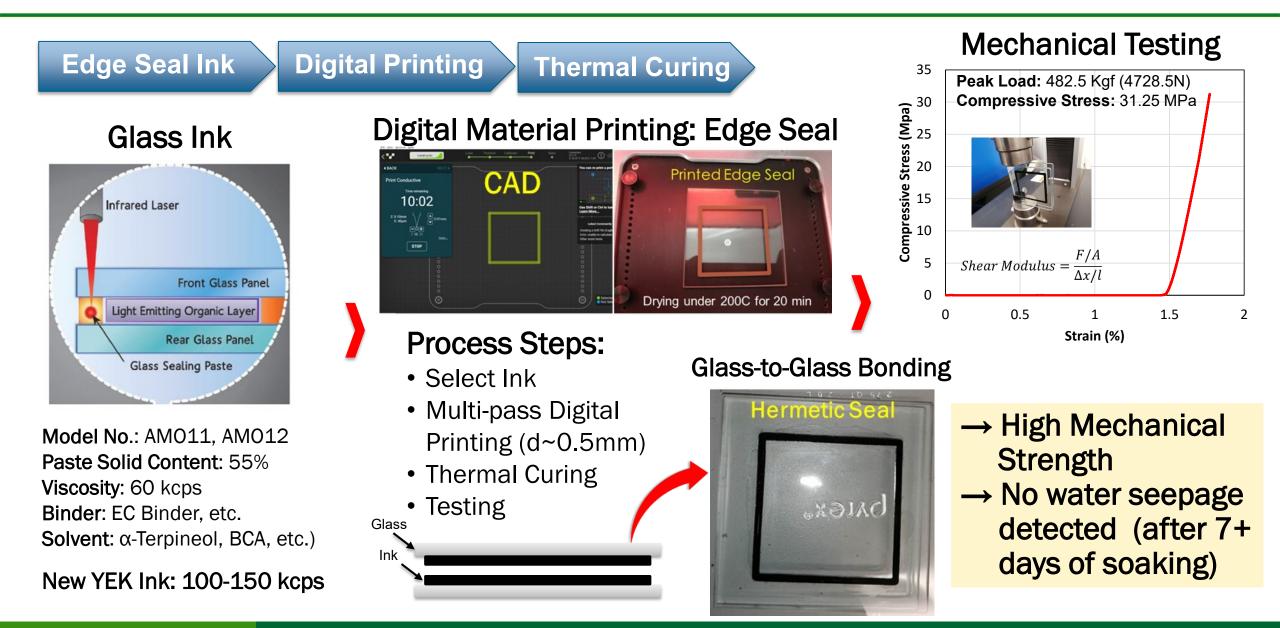
Glass Strengthening: Plasma Arc Lamp Processing

New Capability Development


Nondestructive Analysis of Surface Stress

- Surface Stress in Tempered, Heat-Strengthened, or Annealed Glass
- Compliant with ASTM
 C1048, C1279, EN-12150,
 EN-1863

PAL Processing: Impact on Glass


 $\rightarrow \mbox{ Photonic Pulse Thermal Processing} \\ \mbox{ to Impact Glass Strength}$

→ Even a Short Process Time (<10s) Significantly Impacts Glass Strength

→ Photonic Processing to Impact Thin Glass Strength for Emerging Window Technologies

Hermetic Edge Seal: Printing and Laser processing Pathway

Hermetic Edge Seal: Printing and Laser processing Pathway

Digital Printing Edge Seal Ink Laser Curing Glass Frit Temperature $T = \frac{KP}{a^2 \sqrt{pD} \epsilon L}$ **New Capability Development** K: Scaling coefficient, P: Laser power, a: beam diameter, D: Heat diffusivity, ε : laser radiation absorption by frit, L: Frit height **NIR Solid State Lasers** Low Thermal Budget for **Edge Sealing** Materials Processing Laser Head **Frit Flow** Laser and Sealing Sealing Poor Good Temperature bonding bonding aser Lenses Laser Processing: Key Considerations Furnace Laser 1: Fiber Laser Sealing Parameter Specs Organic Ink Rheology: Laser energy absorption and 808 nm Wavelength (nm) Removal 0-100 W Thermal compatibility Power (W) Target Beam size Range 0.5-5.0 mm for Processing (mm) Printed layer thickness and surface profile CW Type Time Laser 2: Fiber Laser Bond strength after laser processing Parameter Specs 940 nm Wavelength (nm)

• Hermetic sealing characteristics

0-400 W

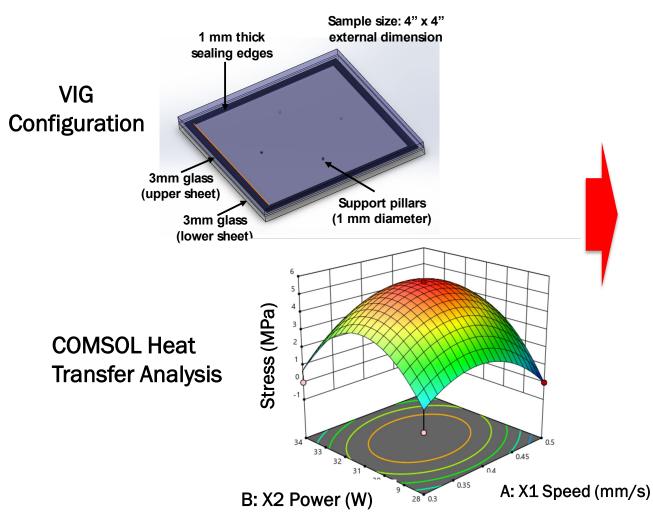
CW

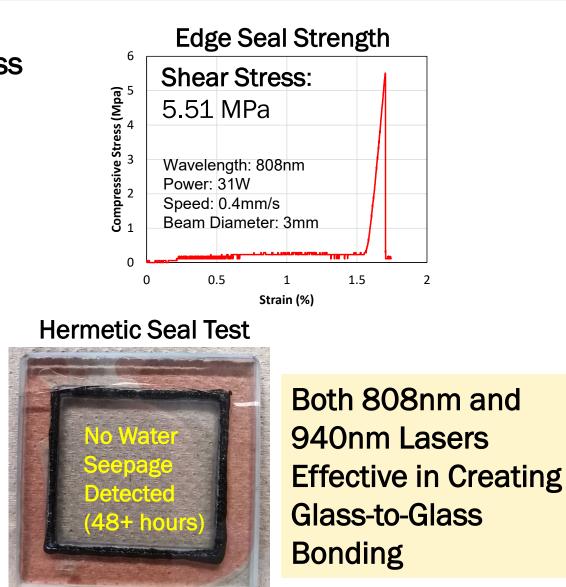
0.5-5.0 mm

Power (W)

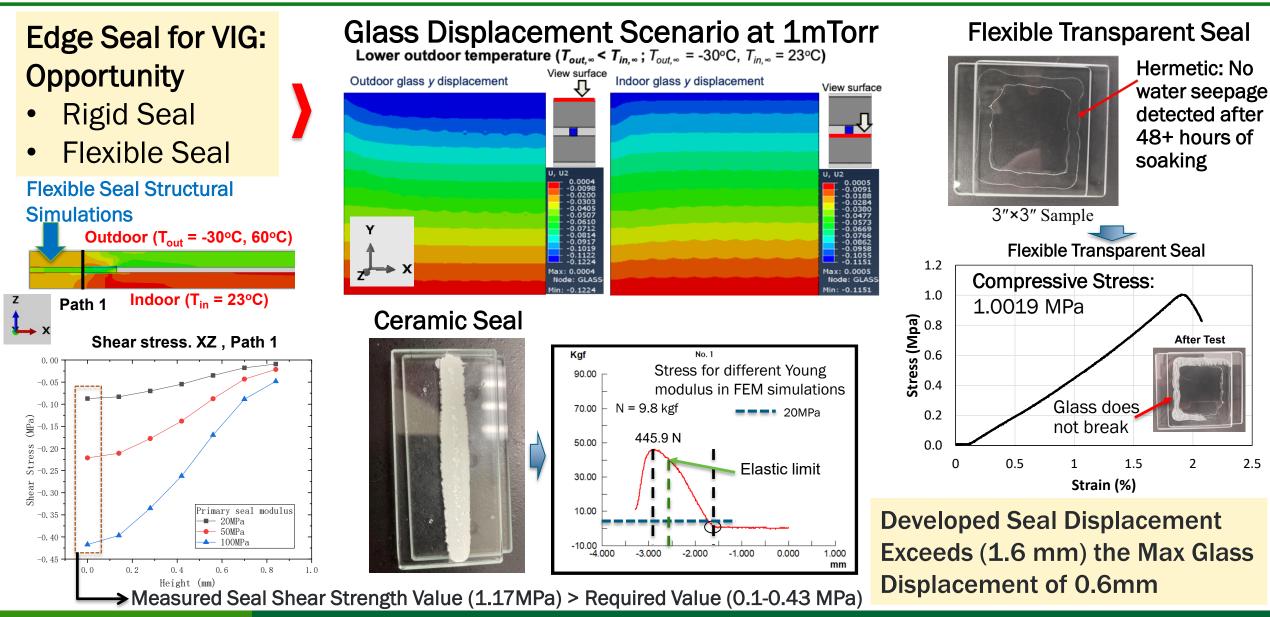
Type

Target Beam size Range

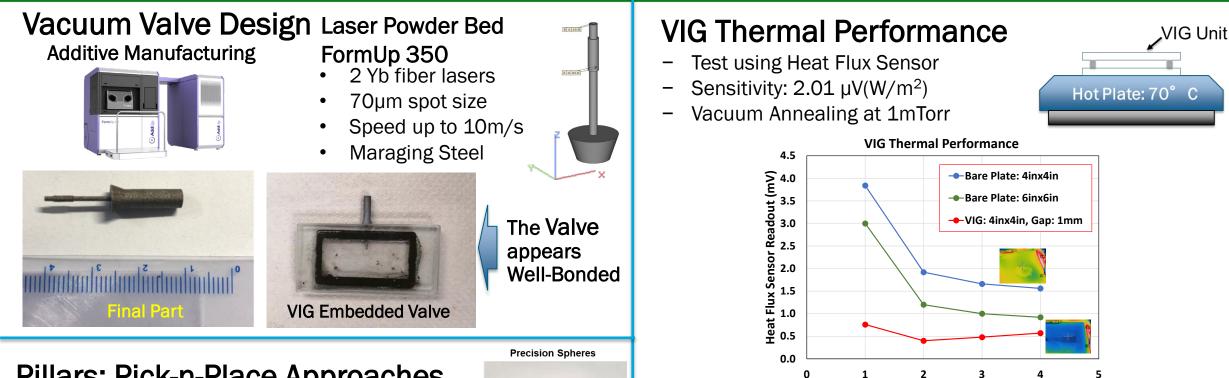

for Processing (mm)


Glass

Edge Seal

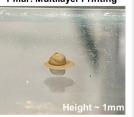

Hermetic Edge Seal: Printing and Laser processing Pathway

Optimizing Edge Seal Laser Process Laser Process Control: Speed \leftrightarrow Power \leftrightarrow Stress



Flexible Seal for VIG

Additive Manufacturing and Integration of VIG Components

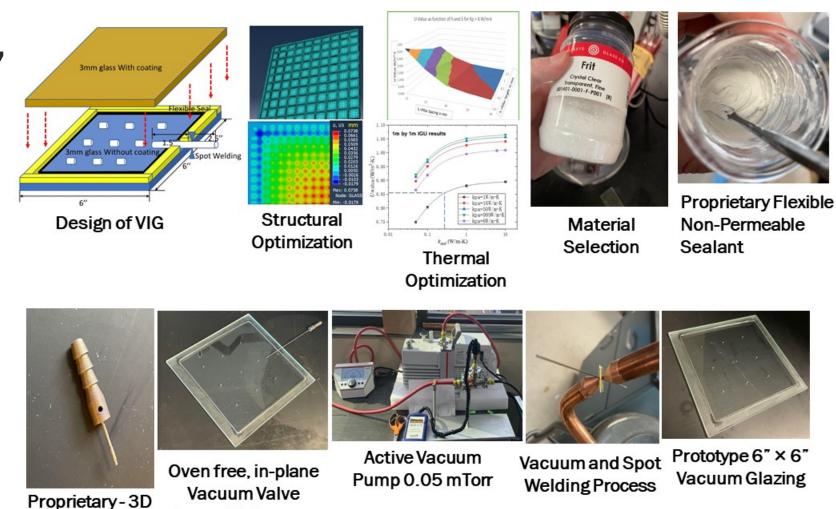


Pillars: Pick-n-Place Approaches

- **Digital Ink Printing:** Ink selection for target spacing
- **Precision Spheres:** Broad range of materials available
- CNC Cylinder: Glass ceramic rods cut to dimensions

Pillar: Multilayer Printing

Main Points:

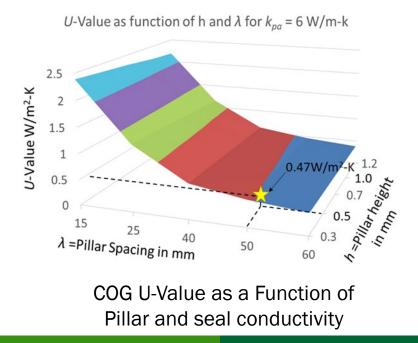

- Measurements dependent on sample size
- Lower heat flow measured across VIG unit
- Glass Outgassing and Getter Material Investigation Underway to analyze impact on thermal performance

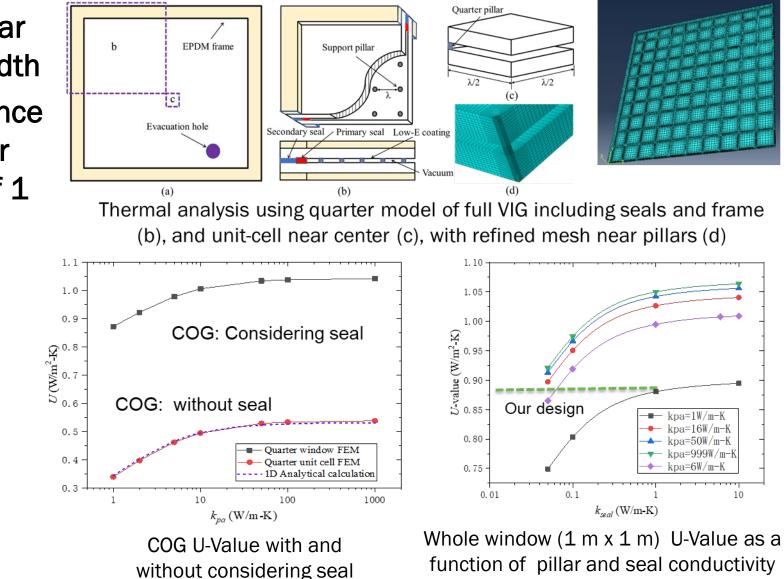
Time (Minutes)

VIG with 3D Printed Valve, Flexible Seal and Composite Pillars

VIG – Oven-Free Flexible Seal, In-plane Valve, Composite Pillar

- Development of Concept Design
- Modeling for Structural/ Thermal Characteristics
- Materials and Parts: Development, Testing, and Optimization
- Prototype Sample (6 in by 6 in)
- Scale sample (20 in by 14 in)


Assembly Process


Printed Vacuum Valve

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

VIG – Thermal Analysis

- VIG Performance: Optimized pillar spacing and height, and seal width
- For optimal structural performance and valve accommodation: pillar spacing of 50 mm and height of 1 mm were selected

10

Stakeholder Engagement

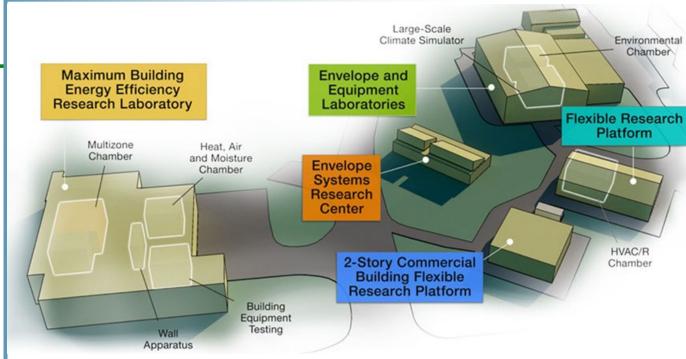
- NDA established with Vitro
 - Visited Vitro glass and IGU Plant to better understand the Glass manufacturing, Low-E coating, Tempering and IGU manufacturing processes.
 - Procured 3 mm glass samples for fabrication and testing of different processes of pillar and edge seal.
- Oldcastle BuildingEnvelop: NDA established.
- YEK Glass Co., Ltd.: Expertise in Ultra Low Temperature Glass Frit. Applications include bonding (adhesion), hermetic sealing (encapsulation), insulation, and protection.
- Participation in Stakeholder Workshop on Research Needs Around Durability of Emerging Fenestration Technologies at NREL

Oldcastle BuildingEnvelope*

Progress and Remaining Project Work

- Plasma Arc Lamp Processing to Impact Glass Strength
 - \rightarrow Low thermal budget PAL processing results in high glass strength matching float glass and heat strengthened glass strengths
 - \rightarrow <u>Next Step</u>: Compare performances of thin and thick glasses (Technology Solution for Emerging Thin Glass Windows)
- Laser Process Space for Edge Sealing at Low Thermal Budgets
 - → NIR Laser processing effective in achieving glass-to-glass bonding with edge seal strength of 5.51MPa and a hermetic seal
 - → <u>Next Step</u>: Establish laser-ink-thickness-bonding correlation for optimum edge seal gaining from experimental findings (Further engage vendor)
- Design and Implementation of Vacuum Insulation Glazing
 - \rightarrow Establish quantitative thermal performance of integrated VIG unit as a function of vacuum level
 - → VIG Specifications Document with focus on Technology Integration Opportunity: ink materials, high throughout processes, discreet component design, and path forward

Disclosure


Disclosure 201804214, DOE S-138,885: Pulse Strengthened and Laser Edge Fused Sealed Vacuum Insulation Glazing (VIG)

Publication

Effects of Pillar Design on the Thermal Performance of Vacuum Insulated Glazing (Submitted to Energy and Buildings)

Thank you

Oak Ridge National Laboratory Pooran Joshi, Senior Scientist (865) 394-4509 | joshipc@ornl.gov

ORNL's Building Technologies Research and Integration Center (BTRIC) has supported DOE BTO since 1993. BTRIC is comprised of 50,000+ ft² of lab facilities conducting RD&D to support the DOE mission to equitably transition America to a carbon pollution-free electricity sector by 2035 and carbon free economy by 2050.

Scientific and Economic Results

238 publications in FY20
125 industry partners
27 university partners
10 R&D 100 awards
42 active CRADAs

BTRIC is a DOE-Designated National User Facility

Project Budget

Project Budget: \$1,500,00 (FY19-FY21) Variances: No Cost to Date: \$1,365,000 Additional Funding: No

		Budge	t History		. – 12/31/2021 Cost-share					
10/01/2018 - FY 2019		FY 2	2020	FY 2021 - 12/31/2021						
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share					
\$500,000		\$500,000		\$500,000						

Project Plan and Schedule

Project Schedule												
Project Start: 10/01/2018		Completed Work										
Projected End: 12/31/2021		Active Task (in progress work)										
		Milestone/Deliverable (Originally Planned) use for missed milestones										
		Milestone/Deliverable (Actual) use when met on time										
		FY2018			FY2019				FY2020			
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)
Past Work	-				-	-			-			
Q1: VIG technology review, and framework for VIG system and component specifications												
Q2: Thermo-physical modeling of VIG components and system			•									
Q3: Modeling, conceptual design, and material and process identification for edge seal and pillars												
Q4: Go/No-Go: Develop flexible edge seal for vacuum glazing using 3D printing techniques												
Q5: Fabrication of pillars using additive manufacturing												
Q6: Develop pulse thermal process and perform mechanical measurements to evaluate impact on glass strength							•					
Q7: Fabricate one-way valve meeting design criterion or alternate method to develop vacuum								•				
Q8: Go/No-Go: Finalization of VIG components meeting design criterion												
Q9: Evaluate functioning of vacuum levels to maintain thermal performance through ASTM testing												
Q10: Fabricate prototype VIG to conduct ASTM testing											•	
Q11: Document test and evaluation of thermal and physical performance of VIG testing											No- Exte	Cost
Q12: Final prototype VIG sample											(12/2	