

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

## The Novel Cast Aluminum-Cerium Heat Exchanger



Oak Ridge National Laboratory Kashif Nawaz (Group Leader- Multifunctional Equipment Integration) 865-241-0792, nawazk@ornl.gov

# **Project Summary**

#### <u>Timeline</u>:

Start date: October 2018

Planned end date: September 2021

#### Key Milestones

- 1. Fabricate and evaluate first 1 kW cast heat exchanger (HX) (Sept 30, 2020)
- Complete the evaluation of the thermal performance of the second prototype heat exchanger (June 30, 2021)

#### Budget:

|      | DOE funds | Cost share |
|------|-----------|------------|
| FY19 | 445K      | 50K        |
| FY20 | 445K      | 25K        |
| FY21 | 445K      | -          |

#### Key Partners:









This resulted in CRADA partnership

#### Project Outcome:

- Development of the first HX that is casted in one piece, including the headers, eliminating the need for brazing or welding
- Successfully development of a method of manufacturing low-cost high-pressure microchannel HXs

Leveraging the ORNL invented the AI-Ce alloy under Critical Material Institute to develop next generation HX

## **Project Team**

- Oak Ridge National Laboratory
  - Kashif Nawaz (Sr. R&D staff)
  - Ayyoub Momen (Director, Ultra Sonic Tech)
  - Mingkan Zhang (R&D staff)
  - Jamison Brechtl (Post Doc associate)
  - Michael Kessler (R&D staff)
  - Orlando Rios (Associate Professor- add UTK)
  - Jiahao Cheng (R&D staff)
  - Xiaohua R&D staff)
- Eck Industries Inc.
  - David Weiss (VP R&D)
- University of Maryland
  - Jiazhen Ling (Associate Professor)
  - Vikrant Aute (Associate Professor)
- Virginia Tech
  - Reza Mirzaeifar (Associate Professor)
  - Ryan Lane (Graduate Research Assistant)



























## Challenge

- Heat exchanger is an essential component of any energy conversion process.
- Overall, heat exchangers account for more than 50% energy consumption and refrigerant inventory in a heat pump.
- Joints at headers are the weakest points and brazing makes the microchannel expensive
- Header deployment for most of the recent compact heat exchanger to reduce the refrigerant charge is a major technological challenge
- High-pressure HXs are expensive (CO2 HXs are very expensive)



Corrosion map of the U.S.



HXs fail in corrosive environments (i.e. in FL coastal regions HVAC condenser aluminum fins corrode within 5 years)

#### Challenge



Extruded microchannels: Small feature sizes: 0.1 mm fins, <1 mm channels

Fin stamping, assembly, fluxing, drying, brazing in controlled atmosphere brazing (CAB) furnace



- Throughput: 500,000 units/year
- Manufactured cost: ~\$2-\$4/lb (excludes the capital cost/markup)

## **Historical Overview**

- Aluminum was more expensive than gold in 19th century.
- In 1850, aluminum was \$37,200/kg, but gold was \$20,500/kg
- In 1884 when the Washington Monument was finalized, a 2.8 kg aluminum pyramidon was placed at the top
- In 1889, the Bayer, Hall process was developed, which significantly reduced the cost of aluminum extraction
- Today, aluminum is being used in HVAC, automotive, aviation, power generation, and other industries





A new material/alloy/manufacturing processes could potentially revolutionize many industries!

## **Solution Approach**



# **Project Impact**

- Castability leading to reduced manufacturing cost
  - Unlocks <u>new potential geometries</u> that otherwise cannot be cost effectively manufactured
  - Increase leak resistance
  - Development of customized headers that can minimize refrigerant flow <u>maldistribution</u>
- Corrosion resistance
  - Better corrosion resistance than conventional aluminum alloys
  - Reduced degradation of AI fins in <u>coastal areas</u>.
  - Indoor coils—avoids formicary corrosion that can cause <u>refrigerant</u> leaks in copper tubes
  - Corrosive exhaust gases
- Mechanical strength (including at high-temperatures)
  - High-pressure applications and temperature (~300 C)
- Lower manufacturing cost
  - Low-cost casting manufacturing process
  - Eliminates the need for post-heat treatment
- Substantial reduction in refrigerant charge, CO<sub>2</sub> emissions reduction





Excellent interfacial contact for the metallurgical bond between the Al-Ce manifold and the SS tube

- The alloys studied for this project consist primarily of aluminum, cerium, and magnesium
- Alloy formed by melting pure forms of the various elements in a furnace
- Samples were either as-cast or extruded (ratios up to 52:1)
- Some samples also underwent heat treatment
  - T4: 540 °C for ten hours and then rapidly quenched in water
  - T6: 540 °C for ten hours, rapidly quenched in water, and then aged at 150 °C for 3 hours

| Aluminum | Cerium | Magnesium | Condition     |
|----------|--------|-----------|---------------|
| 87.6%    | 12%    | 0.4%      | As-cast       |
| 82%      | 8%     | 10%       | 52:1 extruded |

- Mechanical testing:
  - In situ compression and tension testing
  - Nanoindentation
- Microstructural characterization Methods materials and component level
  - X-ray diffraction
  - Neutron diffraction
  - Scanning electron microscopy
  - Computational approaches
  - Finite element analysis









Team demonstrated the ability to cast a fullscale heat exchanger with consistently spaced microchannels by the addition of a center stabilizing plate



Stainless steel tube assemblies



Successful EBSD Mapping and Simulation Work of Nanoindentations on an AI-8Ce-10Mg extruded sample



Nanoindentation hardness (left) and Young's modulus (right) data for the as-received, T4 heat treatment, and T6 heat treatment samples.



#### In situ (SEM) Tension Tests Help Examine Stress-induced Crack Propagation in As-received Al-11Ce-0.4Mg Alloy

#### Progress: Stakeholder Engagement

#### **Engagement:**

- Weekly meetings: ORNL-VT
- Biweekly meetings: ORNL/ECK/UMD/VT/OTS

#### **Publications/Inventions/Reports:**

Invention Disclosure 201804134, DOE S-138,801

Multiple milestone reports

Multiple publications (fundamental and applications)

- Ryan J. Lane, Ayyoub M. Momen, Michael S. Kesler, Jamieson Brechtl, Orlando Rios, Kashif Nawaz, and Reza Mirzaeifar, The Development of a Crystal Plasticity Finite Element Model for Al-8Ce-10Mg Alloys, submitted to Journal of Alloys and Compounds
- Jiahao Cheng, Ryan Lane, Michael S. Kesler, Jamieson Brechtl, Xiaohua Hu, Reza Mirzaeifar, Orlando Rios, Ayyoub M. Momen, Kashif Nawaz, Experiment and Non-Local Crystal Plasticity Finite Element Study of Nano-Indentation on AI-8Ce-10Mg Alloy, submitted to International Journal of Solids and Solutions

#### Industry input:







# Thank you

**Oak Ridge National Laboratory** 

**Kashif Nawaz** 

(Group Leader- Multifunctional Equipment Integration) 865-241-0792, nawazk@ornl.gov



#### **ORNL's Building Technologies Research and Integration Center (BTRIC)** has supported DOE BTO since 1993. BTRIC is comprised of 50,000+ ft<sup>2</sup> of lab facilities conducting RD&D to support the DOE mission to equitably transition America to a carbon pollution-free electricity sector by 2035 and carbon free economy by 2050.

#### Scientific and Economic Results

238 publications in FY20125 industry partners27 university partners10 R&D 100 awards42 active CRADAs

BTRIC is a DOE-Designated National User Facility

#### **Project Budget**

Project Budget: \$1,335 K (open lab call 2018) Variances: None Cost to Date: \$890K Additional Funding: Note

| Budget History             |            |         |             |           |            |  |  |  |  |
|----------------------------|------------|---------|-------------|-----------|------------|--|--|--|--|
| FY2019 - FY 2020<br>(past) |            | FY 2021 | . (current) | FY 2022 - |            |  |  |  |  |
| DOE                        | Cost-share | DOE     | Cost-share  | DOE       | Cost-share |  |  |  |  |
| \$890K                     | \$50K      | \$445K  | \$25K       |           |            |  |  |  |  |

## **Project Plan and Schedule**

| Project Schedule                                      |              |                                                     |              |              |              |              |              |              |                     |              |              |              |
|-------------------------------------------------------|--------------|-----------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------------|--------------|--------------|--------------|
| Project Start: 10/1/2018                              |              | Completed Work                                      |              |              |              |              |              |              |                     |              |              |              |
| Projected End: 9/31/2021                              |              | Active Task (in progress work)                      |              |              |              |              |              |              |                     |              |              |              |
|                                                       |              | Miles                                               | stone/       | /Delive      | erable       | (Orig        | inally       | Plann        | ed) <mark>us</mark> | e for        | missed       | k            |
|                                                       |              | Milestone/Deliverable (Actual) use when met on time |              |              |              |              |              |              |                     |              |              |              |
|                                                       |              | FY2013                                              |              |              | FY2014       |              |              |              | FY2015              |              |              |              |
| Task                                                  | Q1 (Oct-Dec) | Q2 (Jan-Mar)                                        | Q3 (Apr-Jun) | Q4 (Jul-Sep) | Q1 (Oct-Dec) | Q2 (Jan-Mar) | Q3 (Apr-Jun) | Q4 (Jul-Sep) | Q1 (Oct-Dec)        | Q2 (Jan-Mar) | Q3 (Apr-Jun) | Q4 (Jul-Sep) |
| Past Work                                             |              |                                                     |              |              |              |              |              |              |                     |              |              |              |
| Q1: Market assessment                                 |              |                                                     |              |              |              |              |              |              |                     |              |              |              |
| Q2: Property measurments                              |              |                                                     |              |              |              |              |              |              |                     |              |              |              |
| Q3: HX design specifications                          |              |                                                     |              |              |              |              |              |              |                     |              |              |              |
| Q4: HX design showing 15% improvement                 |              |                                                     |              |              |              |              |              |              |                     |              |              |              |
| Q1: Design the cast                                   |              |                                                     |              |              |              |              |              |              |                     |              |              |              |
| Q2: Complete CFD simulation                           |              |                                                     |              |              |              |              |              |              |                     |              |              |              |
| Q3: Complete cast fabrication                         |              |                                                     |              |              |              |              |              |              |                     |              |              |              |
| Q4: Evaluate the cast HX performance                  |              |                                                     |              |              |              |              |              |              |                     |              |              |              |
| Q1: Documenting the manufacturing flaws               |              |                                                     |              |              |              |              |              |              |                     |              |              |              |
| Q2: Complete the fabrication of second HX             |              |                                                     |              |              |              |              |              |              |                     |              |              |              |
| Q3: Evaluate the thermal performance                  |              |                                                     |              |              |              |              |              |              |                     |              |              |              |
| Q4: Cost analysis, commercialization activities, repo |              |                                                     |              |              |              |              |              |              |                     |              |              |              |