

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Machine-Learning-Driven, Site-Specific Weather Inference for Building Energy Forecasting

Performing Organization: Principal Investigators:

Rui Yang, Senior Research Engineer, 303-275-4336, Rui.Yang@nrel.gov

Xin Jin, Senior Research Engineer, 303-275-4360, Xin.Jin@nrel.gov

Project Summary

Timeline:

Start date: 10/01/2018 Planned end date: 09/30/2021

Key Milestones:

- Achieved ≤20% error on short-term forecasts of local weather conditions for the selected sites. 09/30/2019
- Achieved ≥5% daily energy savings for selected buildings with MPC and site-specific weather forecasts. 09/30/2020
- 3. Document site-specific weather forecasting methods and potential benefits for buildings. **09/30/2021**

Budget:

Total Project \$ to Date:

- DOE: \$750,000
- Cost Share: \$0

Total Project \$:

- DOE: \$750,000
- Cost Share: \$0

Key Partners:

EARTH NETWORKS"

Project Outcome:

- 1. Advance fundamental building science on sitespecific weather forecasting and its integration with advanced building controls.
- 2. Provide generalizable guidelines on the appropriate level of site-specific weather forecasting and its impact on building energy savings improvement.

Rui Yang (PI) Senior Research Engineer Site-specific weather forecasting

Xin Jin (Co-PI) Senior Research Engineer Building control

Andrew Kumler Research Engineer Solar irradiance forecasting

Huaiguang Jiang Research Engineer Site-specific weather inference

Rohit Chintala Research Engineer Building control

Jeff Maguire Research Engineer Building modeling

Rawad El Kontar Research Engineer Building analysis

Yu Xie Senior Research Scientist Solar irradiance forecasting

Challenges

Accurate, site-specific weather forecasts are crucial for buildings

- Input for advanced building control
 - Predictive optimization
 - Improve energy efficiency
 - Reduce energy cost

• Enabling technology for GEBs

- GEB service capabilities
- GEB renewable energy integration
- Optimal demand side management

Buildings as Controllable Resources in Power Grids

Challenges

Physics-based approaches

- Numerical weather prediction (NWP) models
- Down to 4km²
- Lack the capability to further scale down to finer resolutions

• Data-driven approaches

- Promising accuracy for short-term forecasts
- Use time-series weather data
- Not employed to provide site-specific forecasts

No site-specific weather forecasts available for individual buildings

Approach

- Develop a foundational platform to provide site-specific weather forecasts
 - Low-cost total sky imagers (TSIs)
 - Weather station data
- Incorporate site-specific weather forecasts in building controls
 - Advanced control technologies
 - Co-simulation with EnergyPlus

Approach: Weather Forecasting

Learn the spatiotemporal correlation between weather conditions at nearby weather stations and the building site

Publication #1: R. Yang, H. Jiang, J. Hao, and X. Jin, "Machine-Learning-Driven, Site-Specific Weather Forecasting for Grid-Interactive Efficient Buildings," 2020 ACEEE Summer Study on Energy Efficiency in Buildings, Aug. 2020.

Machine Learning

Approach: Weather Forecasting

Decision Tree-Based Methods

Approach: Solar Forecasting

- Physics-based, smart persistence model for intra-hour solar forecasting (PSPI)
 - Utilize radiative transfer physics
 - Break down global horizon irradiance (GHI) into various physical components
 - Allow forecasting of separate variables
 - Integrate surface-based observations of cloud fraction from TSI
 - Investigate time-series and machine learning methods for forecasting of cloud fraction and cloud albedo

Publication #2: A. Kumler, Y. Xie, Y. Zhang, R. Yang, X. Jin, M. Sengupta, and Y. Liu, "Integration of Total Sky Imager Data with a Physics-based Smart Persistence Model for Intra-hour Forecasting of Solar Radiation (PSPI)," *American Meteorological Society Meeting*, Boston, MA, Jan. 2020.

Approach: Building Controls

Co-simulation with EnergyPlus via BCVTB

- Small office building from the DOE reference building library
- 5 zones: 4 perimeter zones and 1 core zone
- IECC 2009 Code
- Floor area: 511 m^2

Impacts: Support DOE Missions and Benefit Stakeholders

- Net-zero emissions by 2050 and carbon-free electricity sector by 2035
- Energy justice for disadvantaged communities
- Energy, Emission and Equity (E3) Initiative

Audience/Customers	How audience will use the results
Building Owners/Operators	 Better understanding of the microclimate and its impact to building energy use; Drive efficiency upgrades or adjustments of building control strategies for better energy savings; Leverage solar irradiance forecasts to reduce energy cost for buildings with rooftop photovoltaics.
Equipment Manufacturers	 Incorporate the site-specific weather forecasts in their product; Improve pre-cooling and pre-heating, leverage natural ventilation; Save energy and improve efficiency.
Weather Service Providers	 Provide more accurate forecasts that are specific to a building site instead of a large area.
Buildings Researchers	 Use the site-specific forecasts to improve simulation accuracy and reliability of techno-economic analysis.

Representative Results in Denver

6-Hour-Ahead Temperature Forecasting Error Comparison

Data from 13 stations in 2017

- 274 days for training
- 91 days for testing

Superior accuracy using machine-learning-based forecasting methods

Progress: Generalization

ullet

Machine-learning-based forecasting methods can generalize to different climate zones

Progress: Solar Forecasting

Accurate intra-hour solar irradiance forecasts with TSIs

Progress: Buildings

Site-specific weather forecasts improve energy cost savings while maintaining thermal comfort

Indoor temperature of the small office reference building in a typical summer day in Denver

Under time-of-use rate, MPC with site-specific forecasts achieved:

- 15.6% cost savings compared to the baseline case without MPC
- 5.4% cost savings compared to the case with remote forecasts and MPC
- Comparable thermal comfort levels

Similar results were observed during other days in the summer and in other scenarios with different rate structures.

Key findings:

- MPC is tolerant of weather forecast errors because it uses receding horizon and buildings act as low-pass filters.
- Site-specific forecasts can generate higher energy cost savings in mild days when the cooling load is relatively low.
- Standard weather services can still be used to drive MPC as long as the forecast error is smaller than 2°C.

Stakeholder Engagement

- Technical advisory group
 - Regular meetings with advisory group
- Dissemination
 - 1 conference paper published
 - 2 conference presentations
 - 1 journal paper finalized
- Potential adoption
 - Active discussion with partner for industry adoption
 - Potential implementation in a microgrid

Remaining Project Work

Remaining Project Work

- 1. Wrap up building simulations to demonstrate values of site-specific weather forecasts
 - Complete simulations for 3 use cases

2. Document and close out project

- Complete the final report of the project
- Organize a technical advisory group webinar

3. Complete in-progress publications:

- Transfer learning-based generalization of site-specific weather forecasting method
- Value analysis of site-specific weather forecasts with MPC for buildings

Future Research Topics

- Energy justice
 - Explore the impact of microclimate on disadvantaged neighborhoods
 - Inform future urban planning and policy making

Supporting E3 Initiative

- Improve the efficiency and reduce emissions of heat pumps
- Better understand microclimate's impact on heat pump efficiency and operational limit

Source: DOE

Thank You

Performing Organization: Principal Investigators: National Renewable Energy Laboratory Rui Yang, Senior Research Engineer, 303-275-4336, <u>Rui.Yang@nrel.gov</u> Xin Jin, Senior Research Engineer, 303-275-4360, <u>Xin.Jin@nrel.gov</u>

REFERENCE SLIDES

Project Budget

Project Budget:

Variances: No variances. Cost to Date: \$665,226. Additional Funding: None.

	DOE
FY19	\$250,000
FY20	\$250,000
FY21	\$250,000
Total	\$750,000

Budget History												
FY 2019 (pa	– FY 2020 ast)	FY 2 (cur	2021 rent)	FY 2 (project c	2022 oncluded)							
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share							
\$500,000	\$0	\$250,000	\$ 0	N/A	N/A							

Project Plan and Schedule

Past work

🔺 Completed milestone 🛛 ★ End

★ End-of-project goal

Current work 🔶 🛧 Completed Go/No-Go

Took	Description		FY 2	019			FY 2	020		FY 2021			
Task		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
1	Develop site-specific weather inference using weather station data												
2	Develop solar irradiance forecasting method using TSIs												
3	Evaluate the impact of different weather conditions on building energy consumption												
4	Improve the site-specific weather forecasting methods												
5	Develop building energy models with predictive controllers												
6	Quantify the impact of building-specific variables to energy consumption												
7	Evaluate the energy savings impact of site-specific weather forecasts and predictive controller												
8	Develop ensemble learning method to improve site-specific weather forecasting methods												
9	Demonstrate the potential values of site-specific weather forecasts for buildings												
10	Disseminate the project results												

м	Description	FY 2019						FY 2020					FY 2021				
Description		Q	1	Q2	Q3	Q	4	Q1	Q2	Q3	Q2	L	Q1	Q2	Q3	Q4	
M1	Identify potential members for a technical advisory group																
M2	Summarize site-specific weather inference method and results																
МЗ	M3 Summarize the impact analysis results of different weather conditions on building energy consumption																
M4	M4 Deliver a technical report on the developed site-specific weather forecasting method and results																
GNG-1aStrong correlation between the weather differences and building energy consumption							\bigstar										
GNG-1bAchieve less than 20% error on short-term forecasts of local weather conditions							\bigstar										
M5	Summarize the validation results of the weather forecasting methods																
M6	M6 Summarize the building model and controller development efforts and outcomes																
M7	M7 Summarize the impact of building-specific variables to building energy consumption																
GNG-2 Achieve at least 5% daily energy savings with MPC and site-specific weather forecasts												*					
M8	Demonstrate the site-specific weather forecasting methods can generalize to different climate zones																
M9	Validate the site-specific weather forecasting methods in different climate zones																
M10	Quantify the potential benefits of site-specific weather forecasts for buildings																
EPG Deliver a final report and present the work to the technical advisory group in a webinar																	